Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:48:08.245Z Has data issue: false hasContentIssue false

Mocvd-Preparation And In-Situ/Uhvanalysis Of Epitaxial Inp-Films

Published online by Cambridge University Press:  10 February 2011

T. Hannappel
Affiliation:
Hahn-Meitner-Institut, Dep. CD, Glienickerstrasse 100, 14109 Berlin, Germany, [email protected]
S. Visbeck
Affiliation:
Hahn-Meitner-Institut, Dep. CD, Glienickerstrasse 100, 14109 Berlin, Germany, [email protected]
K. Knorr
Affiliation:
Hahn-Meitner-Institut, Dep. CD, Glienickerstrasse 100, 14109 Berlin, Germany, [email protected] Technische Universitdt Berlin, PN 6-1, Hardenbergstrasse 36, 10623 Berlin, Germany
M. Zorn
Affiliation:
Technische Universitdt Berlin, PN 6-1, Hardenbergstrasse 36, 10623 Berlin, Germany
F. Willig
Affiliation:
Hahn-Meitner-Institut, Dep. CD, Glienickerstrasse 100, 14109 Berlin, Germany, [email protected]
Get access

Abstract

Surface science analysis can be utilized for improving the preparation of hetero-interfaces. Epitaxial InP(100)-films were prepared with TBP (tertiarybutylphosphine) and TMin (trimethylindium) as precursors in a commercial MOCVD apparatus. With a new type of transfer system the sample is shifted from the MOCVD apparatus to a UHV chamber within 20 s. A description of the new transfer system is given. RAS (reflection anisotropy spectroscopy) is carried out in the MOCVD and UHV environments. It shows whether the InP(100) surface corresponds to the (2×1) or (2×4) reconstruction or whether it is oxidized. For the first time contamination-free transfer of the (2×1) reconstructed, P-rich InP(100) surface is achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, X., Ishikawa, Y., Ozeki, T., and Hasegawa, H., Jap. J. Appl. Phys 35, 1267 (1996)Google Scholar
2. Esser, N., Resch-Esser, U., Pristovsek, M., and Richter, W., Phys, Rev. B 53, R13257 (1996)Google Scholar
3. Pherson, C. D. Mac, Wolkow, R. A., Mitchell, C. E. J., and McLean, A. B., Phys. Rev. Let. 77, 691694 (1996)Google Scholar
4. Shimomura, M., Sanada, N., Fukuda, Y., and Moller, P. J., Surf. Sci. 359, L451–L455 (1996)Google Scholar
5. Pahlke, D., Kinsky, J., Schultz, C., Pristovsek, M., Zorn, M., Esser, N., and Richter, W., Phys. Rev. B 56, R1645–2276 (1997)Google Scholar
6. Resch, U., Esser, N., Raptis, Y. S., Richter, W., Wasserfall, J., Förster, A., and Westwood, D. I., Surf. Sci. 269–70, 797 (1992)Google Scholar
7. Behrend, J., Wassermeier, M., Daweritz, L., and Ploog, K. H., Surf. Sci. 342, 6368 (1995)Google Scholar
8. Zettler, J. T., Progress in Crystal Growth & Characterization of Materials 35, 2798 (1997)Google Scholar
9. Ruhle, W. and Klingenstein, W., Phys. Rev. B 18, 70117021 (1978)Google Scholar
10. Inoue, T., Kainosho, K., Hirano, R., Shimakura, H., Kanazawa, T., and Oda, O., J. Appl. Phys. 67, 71657168 (1990)Google Scholar
11. Zorn, M., Trepk, T., Zettler, J.-T., Junno, B., Meyne, C., Knorr, K., Wethkamp, T., Klein, M., Miller, M., Richter, W., and Samuelson, L., Appl. Phys. A 65, 333339 (1997)Google Scholar
12. Massies, J. and , Lemaire-Dezaly, J. Appl. Phys. 57, 237243 (1985)Google Scholar
13. Farrow, R. F. C., J. Phys. D 7, 2436 (1974)Google Scholar
14. Gruzza, B., Achard, B., and Pariset, C., Surf. Sci. 162, 202208 (1985)Google Scholar
15. Moison, J. M. and Bensoussan, M., Surf. Sci. 168, 6873 (1986)Google Scholar