Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:06:18.573Z Has data issue: false hasContentIssue false

MOCVD of SnSx thin films for solar cell application

Published online by Cambridge University Press:  13 March 2015

Andrew J. Clayton
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, Ffordd William Morgan St. Asaph Business Park, Denbighshire, LL17 0JD, U.K.
Stuart J. C. Irvine
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, Ffordd William Morgan St. Asaph Business Park, Denbighshire, LL17 0JD, U.K.
Vincent Barrioz
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, Ffordd William Morgan St. Asaph Business Park, Denbighshire, LL17 0JD, U.K.
Alessia Masciullo
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, Ffordd William Morgan St. Asaph Business Park, Denbighshire, LL17 0JD, U.K.
Get access

Abstract

An inline metal organic chemical vapor deposition system was used to deposit tin sulfide at temperatures >500 °C. Tetramethyltin was used as the tin source and diethyldisulfide as the sulfur source. An overhead injector configuration was used delivering both precursors directly over the substrate. The tin and sulfur precursors were premixed before injection to improve chemical reaction in the gas phase. Growth temperatures 500 – 540 °C were employed producing films with approximate 1:1 stoichiometry of Sn and S detected by energy dispersive x-ray spectroscopy. X-ray diffraction showed there to be mixed phases with Sn2S3 present with SnS.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C. and Gordon, T.G., Adv. Energy Mater. 1400496 (2014).Google Scholar
Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorav, T.K., Zhu, Y. and Mitzi, D.B., Adv. Energy Mater. 1301465 (2013).Google Scholar
Vigil-Galán, O., Courel, M., Espindola-Rodriguez, M., Jiménez-Olarte, D., Aguilar-Fruitis, M. and Saucedo, E., Sol. Energy Mater. Sol. Cells, 132, 557 (2015).CrossRefGoogle Scholar
Ghosh, B., Das, M., Banerjee, P. and Das, S., Sol. Energy Mater. Sol. Cells 92, 1009 (2008).CrossRefGoogle Scholar
Sinsermsuksakul, P., Hartman, K., Kim, S.B., Heo, J., Sun, L., Park, H.H., Chakraborty, R., Buonassisi, T. and Gordon, R.G., Appl. Phys. Lett. 102, 053901 (2013).CrossRefGoogle Scholar
Xu, J. and Yang, Y., Energy Conver. Manage. 79, 260 (2014).CrossRefGoogle Scholar
Ogah, O.E., Reddy, K.R., Zoppi, G., Forbes, I. and Miles, R.W., Thin Solid Films, 519, 7425 (2011).CrossRefGoogle Scholar
Sánchez-Juárez, A., Tiburcio-Silver, A. and Ortiz, A., Thin Solid Films, 480-481, 452 (2005).CrossRefGoogle Scholar
Ferekides, C. S., Balasubramanian, U., Mamazza, R., Viswanathan, V., Zhao, H. and Morel, D. L., Sol. Energy, 77, 823 (2004).CrossRefGoogle Scholar
Non-Tetrahedrally Bonded Elements and Binarary Compounds I, Landolt-Börnstein − Group III Condesed Matter, Ed. O. Madelung, U. Rössler and M. Shulz, SpringerMaterials 41C, 812 (1998).Google Scholar
Khadraoui, M., Benramdane, N., Mathieu, C., Bouzidi, A., Miloua, R., Kebbab, Z., Sahraoui, K. and Desfeux, R., Solid State Commun.150, 297 (2010).CrossRefGoogle Scholar