Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:51:27.289Z Has data issue: false hasContentIssue false

MOCVD of GaN-based HEMT structures on 8 inch silicon substrates

Published online by Cambridge University Press:  11 February 2015

Oleg Laboutin
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Chien-Fong Lo
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Chen-Kai Kao
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Kevin O’Connor
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Wayne Johnson
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Daily Hill
Affiliation:
IQE, 200 John Hancock Road, Taunton, MA 02780, U.S.A.
Get access

Abstract

Metal organic chemical vapor deposition, as well as material and basic device properties of nitride-based high electron mobility transistor structures on (111) silicon substrates varying in diameter from 4 to 8 inch were studied using in-situ and ex-situ characterization techniques. All substrates used for the growth of the nitride structures in this study were of SEMI standard thicknesses. The total thickness of the nitride structures was in the range of 1.5 – 5 µm. It is reported that nitride structures can be grown on 4, 6 and 8 inch diameter substrates with very similar post-growth wafer shape, material and device characteristics. It is also shown that their crystal quality, 2DEG transport properties and isolation blocking voltages can be improved by increasing nitride structure thickness while maintaining post-growth wafer bow and warp less than 50 µm. The maximum thickness of nitride structures that can be successfully grown on 8 inch diameter SEMI standard substrates seems to be limited to about 4.5 µm due to plastic deformation of Si. Blocking voltages of more than 700 V were achieved using 4.5 µm thick nitride-based high electron mobility transistor structures grown on 8 inch Si substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Egawa, T. and Shuhaimi, A., J. Physics D: Appl. Physics 43, 354008 (2010)CrossRefGoogle Scholar
Raghavan, S. and Redwing, J. M., J. Appl. Phys. 98, 023514 (2005)CrossRefGoogle Scholar
Raghavan, S., Weng, X., Dickey, E. and Redwing, J. M., Appl. Phys. Lett. 88, 041904 (2006)CrossRefGoogle Scholar
Schultz, O., Dadgar, A., Hennig, J., Krumm, O., Fritze, S., Blasing, J., Witte, H., Diez, A. and Krost, A., Phys. Status Solidi C 11, 3–4, 397 (2014)CrossRefGoogle Scholar
Dadgar, A., Fritze, S., Schultz, O., Hennig, J., Blasing, J., Witte, H., Diez, A., Heinle, U., Kunze, M., Daumiller, I., Haberland, K. and Krost, A., J. Crystal Growth 370, 278, 2013 CrossRefGoogle Scholar
Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U. K., Speck, J. S., DenBaars, S. P. and Freitas, J. A., J. Appl. Physics 89, 12, 7846 (2001)CrossRefGoogle Scholar
Reiher, A., Blasing, J., Dadgar, A., Diez, A., and Krost, A., J. Cryst. Growth 248, 563 (2003)CrossRefGoogle Scholar
Zhang, B. S., Wu, M., Liu, J. P., Chen, J., Zhu, J. J., Shen, X. M., Feng, G., Zhao, D. G., Wang, Y. T., Yang, H., and Boyd, A. R., J. Cryst. Growth 270, 316 (2004)CrossRefGoogle Scholar
Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J. A., Chason, E., Figiel, J., Jpn. J. Appl. Phys. 37 (Part 2), L1540 (1998)CrossRefGoogle Scholar
Feltin, E., Beaumont, B., Laugt, M., de Mierry, P., Vennegues, P., Lahreche, H., Leroux, M., and Gibart, P., Appl. Phys. Lett. 79, 3230 (2001)CrossRefGoogle Scholar
Selvaraj, S. L., Suzue, T. and Egawa, T., IEEE Electron Device Lett v. 30, 6, 587 (2009)CrossRefGoogle Scholar
Cheng, K., Liang, H., Van Hove, M., Greens, K., De Jaeger, B., Srivastava, P., Kang, X., Favia, P., Bender, H., Decoutere, S., Dekoster, J., Borniquel, J., Jun, S. and Chung, H., Appl. Phys. Express 5, 011022 (2012)Google Scholar
Tripathy, S., Lin, V. K. X., Dolmanan, S. B., Tan, J. P. Y., Kajen, R. S., Bera, L. K., Teo, S. L., Kumar, M. K., Arulkumaran, S., Ng, G. I., Vicknesh, S., Todd, S., Wang, W. Z., Lo, G. Q., Li, H., Lee, D. and Han, S., Appl. Phys. Lett. 101, 082110 (2012)CrossRefGoogle Scholar
Arulkumaran, S., Ng, G. I., Vicknesh, S., Wang, H., Ang, K. S., Tan, J. P. Y., Lin, V. K., Todd, S., Lo, G. Q., and Tripathy, S., Jpn. J. Appl. Phys. 51, 111001 (2012)CrossRefGoogle Scholar
Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T. and Matsumoto, K., Jpn. J. Appl. Phys. 52, 08JB06 (2013)CrossRefGoogle Scholar
Christy, D., Egawa, T., Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T. and Matsumoto, K., Appl. Phys. Express 6, 026501 (2013)CrossRefGoogle Scholar
Zhao, M., Sirapalli, Y., Kandaswamy, P. K., Liang, H., Firrincieli, A., Decoutere, S. and Vancoille, E., Phys. Status Solidi C 11, 446 (2014)CrossRefGoogle Scholar
Tripathy, S., Kyaw, L. M., Dolmanan, S. B., Ngoo, Y. J., Liu, Y., Bera, M. K., Singh, S. P., Tan, H. R., Bhat, T. N. and Chor, E. F., ECS Journal of Solid State Science and Technology 3, Q84 (2014)CrossRefGoogle Scholar