Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:54:20.653Z Has data issue: false hasContentIssue false

MOCVD Growth of High Output Power Ingan Multiple Quantum Well Light Emitting Diode

Published online by Cambridge University Press:  10 February 2011

P. Kozodoy
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
A. Abare
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
R. K. Sink
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
M. Mack
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
S. Keller
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
S. P. DenBaars
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
U. K. Mishra
Affiliation:
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106.
D. Steigerwald
Affiliation:
Optoelectronic Division, Hewlett-Packard, San Jose, California 95131–1008
Get access

Abstract

The MOCVD growth of InGaN / GaN multiple quantum well (MQW) structures for optoelectronic applications has been investigated. The structural and optical properties of the layers have been characterized by x-ray diffraction and photoluminescence. The effect of barrier and well dimensions on the optical properties have been examined; highest emission intensity and narrowest linewidth were obtained with thin wells (20–30 Å) and thick barriers (greater than 50 Å). By incorporating an MQW structure as the active region in a GaN p-n diode, high-brightness light emitting diodes (LEDs) have been produced. Under a forward current of 20 raA, these devices emit 2.2 mW of power corresponding to an external quantum efficiency of 4.5%. The emission spectrum peaks at 445 nm and exhibits a narrow linewidth of 28 nm. Under pulsed high current conditions, output power as high as 53 mW was realized and the peak emission wavelength shifted to 430 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Kito, M., Hiramatsu, K., Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
2. Nakamura, S., Senoh, M., Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
3. Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
4. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
5. Itoh, K., Kawamoto, T., Amano, H., Hiramatsu, K., Akasaki, I., Jpn. J. Appl. Phys. 30, 1924 (1991).Google Scholar
6. Koike, M., Yamasaki, S., Nagai, S., Koide, N., Asami, S., Amano, H., Akasaki, I., Appl. Phys. Lett. 68, 1403(1996).Google Scholar
7. Singh, R., Doppalapudi, D., Moustakas, T.D., Appl. Phys. Let., 69, 2388 (1996).Google Scholar
8. Yang, J. W., Chen, Q., Sun, C.J., Lim, B., Anwar, M.Z., Khan, M.A., Temkin, H., Appl. Phys. Lett. 69, 369(1996).Google Scholar
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., Kiyoku, H., Appl. Phys. Lett. 70, 1417 (1997).Google Scholar
10. Keller, B.P., Keller, S., Kapolnek, D., Jiang, W.-N., Wu, Y.-F., Masui, H., Wu, X.H., Heying, B., Speck, J.S., Mishra, U.K., DenBaars, S.P., J. Elect. Mails. 24, 1707 (1995).Google Scholar
Keller, U.S., Keller, B.P., Kapolnek, D., Abare, A.C., Masui, H., Coldren, L.A., Mishra, U.K., DenBaars, S.P., Appl. Phys. Lett. 68, 3147 (1996).Google Scholar
12. Sun, C.J., Yang, J.W., Chen, Q., Lim, B.W., Anwar, M.Z., Khan, M.A., Temkin, H., Weismann, D., Brenner, I., Appl. Phys. Lett. 69, 668 (1996).Google Scholar
13. Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
14. Kuball, M., Jeon, E.-S., Song, Y.-K., Nurmikko, A.V., Kozodoy, P., Abare, A., Keller, S., Coldren, L.A., Mishra, U.K., DenBaars, S.P., Steigerwald, D., (to be published in Appl. Phys. Lett.).Google Scholar