Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:46:34.168Z Has data issue: false hasContentIssue false

MOCVD Growth of AlN/GaN DBR Structure Under Various Ambient Conditions

Published online by Cambridge University Press:  01 February 2011

H. H. Yao
Affiliation:
Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R. O. C.
C. F. Lin
Affiliation:
Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R. O. C.
S. C. Wang
Affiliation:
Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R. O. C.
Get access

Abstract

High reflectivity AlN/GaN DBR structures were grown by MOCVD under three ambient gas conditions during the AlN layer growth. Highest peak reflectivity of about 94.5% with a stopband width of 18 nm at a center wavelength of 442nm was obtained under pure N2 gas ambient growth condition. The center wavelength of the DBR structures blue-shifted to 418 nm and 371 nm and the peak reflectivity also showed a reduction to 92 % and 79 % under the ambient gas conditions of a N2/H2 mixture and pure H2 respectively. Surface roughness showed slight increase from 8nm to 12nm, and the groove depth shows an increase from 25nm to 60nm with increasing the H2 ambient gas ratio. TEM results showed that AlN grown rate was reduction with the increasing H2 content in the ambient gas. The simulation result indicated that optical loss of AlN layers was increased from 450 cm-1 to 1850 cm-1 with the increasing H2 content in the ambient gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Redwing, Joan M., Loeber, David A. S., Anderson, Neal G., Tischler, Michael A. and Flynn, Jeffrey S., Appl. Phys. Lett. 69, 1 (1996).Google Scholar
2 Krestnikov, I. L., Lundin, W. V., Sakharov, A. V., Semenov, V. A., Usikov, A. S., Tsatsul'nikov, A. F., and Alferov, Zh. I., Ledentsov, N. N., a) Hoffmann, A., and Bimberg, D., Appl. Phys. Lett. 75, 1192 (1999).Google Scholar
3 Song, Y.-K., Zhou, H., Diagne, M., Ozden, I., Vertikov, A, Nurmikko, A. V., Carter-Coman, C., Kern, R. S., Kish, F. A., and Krames, M. R., Appl. Phys. Lett. 74, 3441 (1999).Google Scholar
4 Naranjo, F. B., Ferna´ndez, S., Sa´nchez-Garcÿ´a, M. A., Calle, F., and Calleja, E., Appl. Phys. Lett. 80, 2198 (2002).Google Scholar
5 Honda, T, Katsube, A, Sakaguchi, T, Koyama, F, Iga, K, J. J. Appl. Phys. Part 1. 34, 3527 (1995).Google Scholar
6 HM, Ng, TD, Moustakas, SNG, Chu, Appl. Phys. Lett. 76, 281 (2000).Google Scholar
7 Langer, R, Barski, A, Simon, J, NT, Pelekanos, Konovalov, O, Andre, R, Dang, Le Si. Appl. Phys. Lett. 74, 3610 (1999).Google Scholar
8 KE, Waldrip, Han, J, JJ, Figiel, Zhou, H, AV, Nurmikko. Appl. Phys. Lett. 78, 3205 (2001).Google Scholar
9 HM, Ng, TD, Moustakas, SNG, Chu. Appl. Phys. Lett. 76, 2818 (2000).Google Scholar
10 Shirasawa, T, Mochida, N, Inoue, A, Honda, T, Sakaguchi, T, Koyama, F, Iga, K. J. Crystal Growth, 189-190. 124 (1998).Google Scholar
11 Yamaguchi, S, Kosaki, M, Watanabe, Y, Yukawa, Y, Nitta, S, Amano, H, Akasaki, I. superlattices. Appl. Phys. Lett. 79, 3062 (2001).Google Scholar
12 DD, Koleske, AE, Wickenden, RL, Henry, JC, Culbertson, ME, Twigg. J. Crystal Growth, 223, 466 (2001).Google Scholar
13 Brunner, D, Angerer, H, Bustarret, E, Freudenberg, F, Hopler, R, Dimitrov, R, Ambacher, O, Stutzmann, M. J. Appl Phys, 82, 5090 (1997).Google Scholar
14 Yu, G, Wang, G, Ishikawa, H, Umeno, M, Soga, T, Egawa, T, Watanabe, J, Jimbo, T. Appl. Phys. Lett. vol.70, 3209 (1997).Google Scholar