Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:29:23.899Z Has data issue: false hasContentIssue false

Mitigation of Surface Aggregation in Modified Phthalocyanines as Potential Photo Sensitizers

Published online by Cambridge University Press:  01 July 2015

Rory J. Vander Valk
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, U.S.A.
Patrick J. Dwyer
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, U.S.A.
Stephen P. Kelty
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, U.S.A.
Get access

Abstract

Important to the development of dye-sensitized solar cells is the longevity and photo-conversion efficiency of the dye. To improve cost effectiveness, dyes of superior thermal and chemical stability are desirable to extend device performance. In this study, we examine a series of peripherally fluorinated Zinc-Phthalocyanines (FxZnPc). Introduction of chemically inert fluorine and isopropyl fluoroalkyl groups on the periphery of the Pc improve the dye stability and allow for tunable photo-physical properties. Additionally, introduction of the bulky isopropyl fluoroalkyl groups help mitigate molecular aggregation in thin films which is known to be detrimental to maintaining the desired photo-physical properties of the surface coating. Using molecular dynamics and first principles modeling, various substituent effects on surface adhesion and aggregation over TiO2 surfaces are characterized for both symmetric and asymmetric substitution.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, L., Cao, Y., Colella, N.S., Liang, Y., Bredas, J.-L., Houk, K.N. and Briseno, A.L.: Acc. Chem. Res. 48, 500 (2015).CrossRefGoogle Scholar
Ragoussi, M.-E., Ince, M. and Torres, T.: European Journal of Organic Chemistry 2013, 6475 (2013).CrossRefGoogle Scholar
Moons, H., Lapok, L., Loas, A., Van Doorslaer, S. and Gorun, S.M.: Inorganic Chemistry (Washington, DC, United States) 49, 8779 (2010).Google Scholar
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H.: Chem. Rev. 110, 6595 (2010).CrossRefGoogle Scholar
Diebold, U.: Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L. and Schulten, K.: J. Comp. Chem. 26, 1781 (2005).CrossRefGoogle Scholar
Koppen, S. and Langel, W.: Surf. Sci. Rep. 600, 2040 (2006).CrossRefGoogle Scholar
Matsui, M. and Akaogi, M.: Molec. Simul. 6, 239 (1991).CrossRefGoogle Scholar
Předota, M., Bandura, A.V., Cummings, P.T., Kubicki, J.D., Wesolowski, D.J., Chialvo, A.A. and Machesky, M.L.: J. Phys. Chem. B 108, 12049 (2004).CrossRefGoogle Scholar
Dwyer, P.J., Vander Valk, R.J., Caltaldo, V., Demianicz, D. and Kelty, S.P.: J. Phys. Chem. A 118, 11583 (2014).CrossRefGoogle Scholar
Gale, J.: JCS Faraday Trans. 93, 629 (1997).CrossRefGoogle Scholar
Gale, J.D.: Z. Krist. 220, 552 (2005).Google Scholar
Gale, J.D.: Phil. Mag. B 73, 3 (2006).CrossRefGoogle Scholar
Gale, J.D. and Rohl, A.L.: Molec. Simul. 29, 291 (2003).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D.: Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, a.D.J. and Fiolhais, C.: Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
Tang, W., Sanville, E. and Henkelman, G.: J. Phys. Cond. Matt. 21, 0804204 (2009).Google Scholar
Humphrey, W., Dalke, A. and Schulten, K.: J. Molec. Graph. 14, 33 (1996).CrossRefGoogle Scholar