Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:40:33.111Z Has data issue: false hasContentIssue false

Mist Deposition Technique as a Green Chemical Route for Synthesizing Oxide and Organic Thin Films

Published online by Cambridge University Press:  31 January 2011

Shizuo Fujita
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Kentaro Kaneko
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Yutaka Fukui
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Hiroyuki Nishinaka
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Takumi Ikenoue
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Taichi Nomura
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Get access

Abstract

Ultrasonic spray-assisted mist deposition techniques have been developed as a cost-effective and environmental friendly deposition method for oxide and organic thin films. The chemical vapor deposition (CVD) of a variety of oxide thin films having unique functions, such as Cr2O3, Cu2O, Fe3O4, and Al2O3 thin films, has been demonstrated as well as high-quality ZnO and Ga2O3 films ever reported. In addition to the films deposition by the CVD process, the deposition of organic material thin films from the source solution has also been achieved; as examples we have shown the patterned deposition of water-soluble fluorescent polymers with a metal mask. This may substitute the spin-coating technique and contribute to increase the source consumption efficiency in the thin film deposition. We appeal that the mist deposition is a unique and promising technique as a green chemical route for film deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lang, R. J. J. Acoust. Soc. Am. 34, 6 (1962).Google Scholar
2 Rayleigh, J. W. S. The Theory of Sound, 2, 344 (1945).Google Scholar
3 Nishinaka, H. and Fujita, S. J. Cryst. Growth 310, 5007 (2008).Google Scholar
4 Nishinaka, H. Kawaharamura, T. and Fujita, S. J. Korean Phys. Soc. 53, 3025 (2008).Google Scholar
5 Nishinaka, H. Kawaharamura, T. and Fujita, S. Jpn. J. Appl. Phys. 46, 6811 (2007).Google Scholar
6 Shinohara, D. and Fujita, S. Jpn. J. Appl. Phys. 47, 7311 (2008).Google Scholar
7 Kaneko, K. Nomura, T. Kakeya, I. and Fujita, S. Appl. Phys. Express 2, 075501 (2009).Google Scholar
8 Tsukazaki, A. Ohtomo, A. Onuma, T. Ohtani, M. Makino, T. Sumiya, M. Ohtani, K. Chichibu, S. F. Fuke, S. Segawa, Y. Ohno, H. Koinuma, H. and Kawasaki, M. Nature Mater. 4, 42 (2005).Google Scholar
9 Ryu, Y. R. Lubguban, J. A. Lee, T. S. White, H. W. Jeong, T.S. Youn, C. J. and Kim, B. J. Appl. Phys. Lett. 90, 131115 (2007).Google Scholar
10 Iwata, K. Sakemi, T. Yamada, A. Fons, P. Awai, K. Yamamoto, T. Matsubara, M. Tampo, H. and Niki, S. Thin Solid Films 445, 274 (2003).Google Scholar
11 Nomura, K. Ohta, H. Takagi, A. Kamiya, T. Hirano, M. and Hosono, H. Nature 432, 488 (2004).Google Scholar
12 Kawaharamura, T. Nishinaka, H. Kamada, Y. Masuda, Y. Lu, J.-G., and Fujita, S. Korean, J. Phys. Soc. 53, 2976 (2008).Google Scholar