Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:31:41.682Z Has data issue: false hasContentIssue false

Mid-Infrared Photodetector Using Self-Assembled InAs Quantum Dots Embedded in Modulation-Doped GaAs Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Seung-Woong Lee
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Kazuhiko Hirakawa
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Yozo Shimada
Affiliation:
Also, CREST, Japan Science and Technology Corporation, 1-4-25 Mejiro, Toshima-ku, Tokyo 171-003 1, Japan
Get access

Abstract

We have designed and fabricated a quantum dot infrared photodetector which utilizes lateral transport of photoexcited carriers in the modulation-doped A1GaAs/GaAs two-dimensional (2D) channels. A broad photocurrent signal has been observed in the photon energy range of 100–300 meV due to bound-to-continuum intersubband absorption of normal incidence radiation in the self-assembled InAs quantum dots. A peak responsivity was as high as 2.3 A/W. The high responsivity is realized mainly by a high mobility and a long lifetime of photoexcited carriers in the modulation-doped 2D channels. Furthermore, we found that this device has high operation temperature and very high photoconductive gain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For example, Levine, B.F., J. Appl. Phys. 74, R1 (1993).Google Scholar
2. Phillips, J., Kamath, K., and Bhattacharya, P., Appl. Phys. Lett. 72, 2020 (1998).Google Scholar
3. Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 73, 1937 (1998).Google Scholar
4. Maimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M., and Petroff, P.M., Appl. Phys. Lett. 73, 2003 (1998).Google Scholar
5. Xu, S.J., Chua, S.J., Mei, T., Wang, X.C., Zhang, X.H., Karunasiri, G., Fan, W.J., Wang, C.H., Jiang, J., Wang, S., and Xie, X.G., Appl Phys. Lett. 73, 3153 (1998).Google Scholar
6. Horiguchi, N., Fuatasugi, T., Nakata, Y., Yokomaya, N., Mankad, T., and Petroff, P.M., Jpn. J. Appl. Phys. 38, 2559 (1999).Google Scholar
7. Cho, Taehee, Kim, Jong-Wook, Oh, Jae-Eung, and Hong, Songcheol, Jpn. J. Appl. Phys. 38, 2442 (1999).Google Scholar
8.See, for example, Bratt, P.R., in Semiconductors and Semimetals, Vol. 12 Infrared Detectors II, edited by Willardson, R.K., Beer, A.C. (Academic Press, New York, 1977), p.55.Google Scholar
9. Stranski, I.N. and Krastanow, L., Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. K1 Abt. 2B Chemie 146, 797 (1955).Google Scholar
10. Leonard, D, Pond, K., and Petroff, P.M., Phys. Rev. B 50, 11687 (1994).Google Scholar
11. Ribeiro, E., Muller, E., Heinzel, T., Auderset, H., Ensslin, K., Medeiros-Ribeiro, G., and Petroff, P.M., Phys. Rev. B 58, 1506 (1998).Google Scholar
12. Grundmann, M., Ledentsov, N.N., Siter, O., Bimberg, D., Ustinov, V.M., Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 68, 979 (1996).Google Scholar
13. Mukai, K., Ohtsuka, N., Shoji, H., and Sugawara, M., Appl. Phys. Lett. 68, 3013 (1996).Google Scholar
14. Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Joyce, B. A., and Jones, T. S., Phys. Rev. B 58, R15981 (1998).Google Scholar
15. Fano, U., Phys. Rev. 124, 1866 (1961).Google Scholar
16. Lelong, Ph., Lee, S.-W., Hirakawa, K., and Sakaki, H., Physica E, in press.Google Scholar
17. Levine, B.F., Zussman, A., Gunapala, S.D., Asom, M.T., Kuo, J.M., and Hobson, W.B., J. Appl. Phys. 72, 4429 (1992).Google Scholar