Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T22:07:31.019Z Has data issue: false hasContentIssue false

Microwave-assisted synthesis of c-axis oriented ZnO nanorods on a glass substrate coated with ZnO film

Published online by Cambridge University Press:  01 February 2011

Ken-ichi Ogata
Affiliation:
[email protected], Osaka Institute of Technology, Nanomaterials Microdevices Research Center, 5-16-1 Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
Kazuto Koike
Affiliation:
[email protected], Osaka Institute of Technology, Nanomaterials Microdevices Research Center,, Osaka, 535-8585, Japan
Shigehiko Sasa
Affiliation:
[email protected], Osaka Institute of Technology, Nanomaterials Microdevices Research Center,, Osaka, 535-8585, Japan
Masataka Inoue
Affiliation:
[email protected], Osaka Institute of Technology, Nanomaterials Microdevices Research Center,, Osaka, 535-8585, Japan
Mitsuaki Yano
Affiliation:
[email protected], Osaka Institute of Technology, Nanomaterials Microdevices Research Center,, Osaka, 535-8585, Japan
Get access

Abstract

ZnO nanorods synthesis on a glass substrate coated with ZnO film was performed by means of microwave-assisted heating. Nanorod structure was dependent on the underlying ZnO films; slightly tilted nanorods about 800nm diameter were synthesized on an as-sputtered ZnO film while highly c-axis oriented ones about 100nm diameter were developed on the ZnO film after annealing. Photoluminescence spectra of the ZnO nanorods at 6K showed a badedge excitonic emission with comparable intensity to a visible defect related emission, suggesting the existence of many radiative defects which would be originated from insufficient quality of the underlying ZnO layer. Pattered photoresist layer can successfully be utilized for synthesis of the ZnO nanolods in selective area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Z. L., Materials Today, 7, 26 (2004).10.1016/S1369-7021(04)00286-XGoogle Scholar
2. Schmidt-Mende, L. and MacManus-Driscoll, J. L., Materials Today, 10, 40 (2007).10.1016/S1369-7021(07)70078-0Google Scholar
3. Wang, Z. L. and Song, J.H., Science, 312, 242 (2006).10.1126/science.1124005Google Scholar
4. Falconi, C., D'Amico, A. and Wang, Z.L., Sens. Actuators B, 127 54, (2007).10.1016/j.snb.2007.07.002Google Scholar
5. Sasa, S., Hayafuji, T., Kawasaki, M., Koike, K., Yano, M., and Inoue, M., IEEE Electron Device Lett. 28, 543 (2007).Google Scholar
6. Koike, K., Takagi, D., Kawasaki, M., Hashimoto, T., Inoue, T., Ogata, K., Sasa, S., Inoue, M. and Yano, M., Jp. J. Appl. Phys. 46, L865 (2007).Google Scholar
7. Govender, K., Boyle, D.S., Kenway, P. B. and O'Brien, P., J. Mater. Chem. 14, 2575 (2004)10.1039/B404784BGoogle Scholar
8. Perreux, L. and Loupy, A., Tetrahedron 57, 9199 (2001).Google Scholar
9. Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M. and Tsuji, T., Chem Eur J. 11, 441 (2005).10.1002/chem.200400417Google Scholar
10. Ledwith, D., Pillai, S. C., Watson, G. W. and Kelly, J. M., Chem. Commun. 2294 (2004).Google Scholar
11. Peiró, A. M., Domingo, C., Peral, J., Doménech, X., Vigil, E., Hernàndez-Fenollosa, M. A., Mollar, M., Marí, B. and Ayllón, J. A., Thin Solid Films 483, 79 (2005).10.1016/j.tsf.2004.12.030Google Scholar
12. Sun, Y., Riley, D. J. and Ashfold, M. N. R., J. Phys. Chem. B 110, 15186 (2006).10.1021/jp062299zGoogle Scholar
13. Henley, S. J., Ashfold, M. N. R., Nicolas, D. P., Wheatley, P. and Cherns, D., Apll. Phys. A. 79, 1169 (2004)Google Scholar
14. Ogata, K., Koike, K., Sasa, S., Inoue, M. and Yano, M., submitted to Appl. Surf. Sci.Google Scholar
15. Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G. and Yang, P., Nano Lett. 5, 1231 (2005).Google Scholar
16. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J. and Yang, P., Angew. Chem. Int. Ed. 42, 3031 (2003).Google Scholar
17. Sun, Y., Fuge, G. M., Fox, N. A., Riley, D. J. and Ashfold, M. N. R., Adv. Mater. 17, 2477 (2005).Google Scholar
18. Strassburg, M., Rodina, A., Dworzak, M., Haboeck, U., Krestnikov, I.L., A. Hoffmann, Gelhausen, O., Phillips, M.R., Alves, H.R., Zeuner, A., Hofmann, D.M., and Meyer, B.K., phys. stat. sol. (b) 241, 607 (2004).10.1002/pssb.200304187Google Scholar
19. Bekeny, C., Voss, T., Gafsi, H., Gutowski, J., Postels, B., Kreye, M., and Waag, A., J. Appl. Phys. 100, 104317 (2006).Google Scholar
20. Wang, L.-Q., Exarhos, G. J., Windisch, C. F. Jr, Yao, C., Pederson, L. R. and Zhou, X.-D., Appl. Phys. Lett. 90, 173115 (2007).Google Scholar
21. Grabowska, J., Meaney, A., Nanda, K. K., Mosnier, J.-P., Henry, M. O., Duclère, J.-R., and McGlynn, E., Phys. Rev. B 71, 115439 (2005).Google Scholar
22. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
23. Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A. V., phys. stat. sol. (b) 241, 231 (2004)10.1002/pssb.200301962Google Scholar