Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:22:32.787Z Has data issue: false hasContentIssue false

Microstructures of Ultrathin Films of Sputtered PbTiO3

Published online by Cambridge University Press:  15 February 2011

Kiyotaka Wasa
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizu-cho, Kyoto, 619–02, Japan
T. Satoh
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizu-cho, Kyoto, 619–02, Japan
K. Tab Ata
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizu-cho, Kyoto, 619–02, Japan
H. Adachi
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Seika-cho, Kyoto, 619–02, Japan
Y. Ichikawa
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Seika-cho, Kyoto, 619–02, Japan
K. Setsune
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Seika-cho, Kyoto, 619–02, Japan
Get access

Abstract

Ultrathin films of perovskite PbTiO3, 10–100nm thick, were epitaxially grown on miscut (001)SrTiO3 substrate by rf-magnetron sputtering at 600°C. The electron microscope and high resolution x-ray diffraction analysis suggested the evidence of epitaxial growth of (001)PbTiO3/(001)SrTiO3 with three dimensional crystal orientation. The stoichiometric film shows extremely smooth surface with the surface roughness less than 3nm. Deposition on a miscut substrate under stoichiometric conditions is essential to make continuous thin films of single crystal perovskite PbTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haertling, G.H. and Land, C.E., J. Amer. Ceramic Soc, 54, 1 (1971).Google Scholar
Baran, E.J., Catalysis Today, 8, 133 (1990).Google Scholar
2. Wasa, K., Adachi, H. and Kitabatake, M., Ferroelectrics, 131, 343 (1992).Google Scholar
3. Wasa, K., Adachi, H. and Kitabatake, M., Ferroelectrics, 151, 1 (1994).Google Scholar
4. Satoh, T., Wasa, K., Tabata, K., Adachi, H., Ichikawa, Y. and Setsune, K., Proc. of 41st National Symposium, Amer. Vac. Soc, (Denver, 1994) TF-WeM8.Google Scholar
5. Wasa, K., Satoh, T., Tabata, K., Adachi, H., Yabuuchi, Y. and Setsune, K., J. Mater. Res., 9, Nov. 1994 (to be published).Google Scholar
6. Rossetti, G.A. Jr, Cross, L.E. and Kushida, K., Appl. Phys. Lett., 59, 2524 (1991).Google Scholar
7. Shirane, G. and Hoshino, S., J. Phys. Soc. Japan, 6, 265 (1951).Google Scholar
8. Iijima, K. (private communication).Google Scholar
9. Wasa, K., Adachi, H., Ichikawa, Y., Hirochi, K., Matsushima, T., Enokihara, A., Mizuno, K., Higashino, H. and Setsune, K., Science and Technology of Thin Film Superconductors 2. McConnell, R.D. and Noufi, R. ed., (Plenum, New York, 1990) p. 1.Google Scholar
10. Adachi, H. and Wasa, K., IEEE Trans on Ultrason., Ferroelectrics and Freq. Control, 38, 645 (1991).Google Scholar