Published online by Cambridge University Press: 22 February 2011
Erbium additions of 0.25, 0.5, 1.0 and 2.0 atomic percent were incorporated into base alloys of 40 at.% titanium - 60 at.% aluminum by arc melting. Samples of 0.30g were electromagnetically levitated and melted and then rapidly solidified by double anvil splat quenching with liquid temperatures ranging from the liquidus temperature to near the maximum undercooling temperature for each alloy. Microstructures of TiAl with 0.25 and 0.5 at.% Er showed the presence of small erbium rich particles within γ grains as well as antiphase domain boundaries, while TiAl with 1.0 and 2.0 at.% Er showed no evidence of these features. These observations were correlated with solidification velocity measurements on levitated samples. Evidence for disordered primary solidification and a solid state disorder/order reaction is presented.