Article contents
Microstructures in Cold-Rolled Ni3Al Single Crystals
Published online by Cambridge University Press: 26 February 2011
Abstract
Microstructure evolution during cold rolling of binary stoichiometric Ni3Al single crystals was examined by the optical (OM) and transmission electron microscopy (TEM). In the case of the <001> initial RD, the banded structure is formed. Inside each matrix band, the localized shear deformations occur alternately on two {111} planes. In addition, huge amounts of widely extended superlattice intrinsic stacking faults (SISFs) are observed from relatively early stage of cold rolling. The occurrence of the localized shear deformation is considered to be controlled by the SISFs since they must be strong obstacles for the dislocation motion on the other glide plane. The extensive formation of the SISFs is therefore considered to be one of the most important microstructural features which control the cold rolling behavior of Ni3Al.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 2
- Cited by