Published online by Cambridge University Press: 16 February 2011
Deformation studies in compression and in tension have clearly shown evidence for superplasticity for a wide range of fine grained ceramics from both macroscopic and microscopic points of view. The main purpose of this paper is to focus attention on chemical effects in ceramic grain boundaries which can lead to a great variety of behavior. Grain boundary segregation or precipitation, residual impurities or doping elements, and glassy or liquid phases at grain boundaries can strongly affect the macroscopic flow properties of superplastic fine grained ceramics. Some microstructural and grain boundary features, mainly in two oxide materials (alumina and yttria doped zirconia), are analyzed, compared, and discussed in connection with their observed superplastic behavior. Special attention is devoted to the relation between the overall chemistry of the materials (impurities and doping elements) and to the grain boundary structure and chemistry (segregation, precipitation, intergranular phases). Some consequences and implications on the tailoring of ceramic microstructures for superplasticity are discussed. In addition, some recent hot forming and hot bonding experiments are also reported.