Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T03:25:01.344Z Has data issue: false hasContentIssue false

Microstructures, Grain Boundaries and Superplasticity in Fine Grained Ceramics

Published online by Cambridge University Press:  16 February 2011

C. Carry*
Affiliation:
Laboratoire de céramique, Ecole Polytechnique Fédérale de Lausanne 34, chemin de Bellerive, CH-1007 Lausanne, Switzerland
Get access

Abstract

Deformation studies in compression and in tension have clearly shown evidence for superplasticity for a wide range of fine grained ceramics from both macroscopic and microscopic points of view. The main purpose of this paper is to focus attention on chemical effects in ceramic grain boundaries which can lead to a great variety of behavior. Grain boundary segregation or precipitation, residual impurities or doping elements, and glassy or liquid phases at grain boundaries can strongly affect the macroscopic flow properties of superplastic fine grained ceramics. Some microstructural and grain boundary features, mainly in two oxide materials (alumina and yttria doped zirconia), are analyzed, compared, and discussed in connection with their observed superplastic behavior. Special attention is devoted to the relation between the overall chemistry of the materials (impurities and doping elements) and to the grain boundary structure and chemistry (segregation, precipitation, intergranular phases). Some consequences and implications on the tailoring of ceramic microstructures for superplasticity are discussed. In addition, some recent hot forming and hot bonding experiments are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crampon, J. and Escaig, B., J. Am. Ceram. Soc. 63, 680686 (1980).Google Scholar
2. Carry, C. and Mocellin, A., British Ceram. Soc. Proceedings 33 101115 (1983).Google Scholar
3. Wang, J. E. and Raj, R., J. Am. Ceram. Soc. 67, 399409 (1984).Google Scholar
4. Wakai, F., Sakaguchi, S. and Matsumo, Y., Advanced Ceramic Materials 1, 259263 (1986).Google Scholar
5. Carry, C. and Mocellin, A. in Superplasticity, edited by Baudelet, B. and M. Suéry (Editions du C.N.R.S., France 1985) pp. 16.116.19.Google Scholar
6. Carry, C., Proceedings of the M.R.S. International Meeting on Advanced Materials, Vol. 7 “Superplasticity”, edited by Kobayashi, M. and F. Wakai (1989) pp. 199215.Google Scholar
7. Wakai, F., British Ceram. Trans. J. 88, 205208 (1989).Google Scholar
8. Nieh, T.G., McNally, C.M. and Wadsworth, J., Scripta Metall. 22 12971300 (1988).Google Scholar
9. Duclos, R., Crampon, J. and Amana, B., Acta Metall. 37, 877883 (1989).Google Scholar
10. Nauer, M. and Carry, C., in Euro-Ceramics, Vol.3 “Engineering Ceramics”, edited by de With, G., Terpstra, R.A. and Metselaar, R. (Elsevier Applied Science 1989) pp. 3.3233.328.Google Scholar
11. Lange, F.F., Marshall, D.B. and Porter, J.R. in Ultrastructure Processing of Advanced Ceramics. edited by Mackenzie, J.D. and Ulrich, D.R. (John Wiley & Sons, New York 1988) pp. 519532.Google Scholar
12. Lange, F.F., J. Am. Ceram. Soc. 69, 240242 (1986).Google Scholar
13. Gruffel, P., Carry, C. and Mocellin, A. in Science of Ceramics Vol.14 (1988) pp. 587592.Google Scholar
14. Gruffel, P. and Carry, C., Proceedings of the 11th Riso International Symposium on Metallurgy and Materials Science, in Structural Ceramics - Processing, Microstructure and Properties (3–7 September 1990).Google Scholar
15. Laboratoire de céramique EPFL, Project CHI, European program COST 503, Second round (1989), Annual report.Google Scholar
16. Stoto, T., Nauer, M. and Carry, C., to be published.Google Scholar
17. Nauer, M. and Carry, C., to be published.Google Scholar
18. Fridez, J.D., Carry, C. and Mocellin, A. in. Advances in Ceramics, Vol.10, The Amer. Ceram. Soc. (1985) pp. 720740.Google Scholar
19. Venkatachari, K.R. and Raj, R., J. Am. Ceram. Soc. 69, 135138 (1986).Google Scholar
20. Carry, C. and Mocellin, A., Ceramics International 13, 8998 (1987).Google Scholar
21. Lartigue, S., Carry, C. and Priester, L., Colloques de Physique C1, S1 51, 985990 (1990).Google Scholar
22. Blanc, M., Mocellin, A. and Strudel, J.L., J. Am. Ceram. Soc. 60, 403409 (1977).Google Scholar
23. Wakai, F., Iga, T. and Nagano, T., Nippon Geramikkusu Kyokai Gakujutsu Rambunshi 96, 12061209 (1988).Google Scholar
24. Heuer, A.H., Tighe, N.J. and Cannon, R.M., J. Am. Ceram. Soc. 63 5358 (1980).Google Scholar
25. Hermansson, T., Lagerlof, K.P.D. and Dunlop, G.L. in Superplasticity and Superplastic Forming, edited by Hamilton, C.M. and Paton, N.E. (The Minerals, Metals and Materials Soc. 1988) pp. 631635.Google Scholar
26. Wakai, F.,, idem ref. [6] (1989) pp. 225–232.Google Scholar
27. Wakai, F., Kodama, Y. and Nagano, T., Japanese Journal of Applied Physics, Series 2 Lattice Defects in Ceramics, 69–79 (1989).Google Scholar
28. Wakai, F., Sakaguchi, S. and Kato, H., Yogyo-Kyokai-Shi 94, 721725 (1986).Google Scholar
29. Wakai, F. and Nagano, T., J. Mater. Sci. Letters 7, 607609 (1988)Google Scholar
30. Dimos, D. and Kohlstedt, D.L., J. Am. Ceram. Soc. 7, 531536 (1987).Google Scholar
31. Clarke, D.R., in Role of Interfaces, edited by Pask, J.A. and Evans, A. (Plenum Press Materials Science Research, Vol.21, 1987) pp. 569576.Google Scholar
32. Chaim, R., Heuer, A.H. and Brandon, D.G., J. Am. Ceram. Soc. 69, 243248 (1986).Google Scholar
33. Evans, A.G., Rice, J.R. and Hirth, J.P., J. Am. Ceram. Soc. 63, 368375 (1980).Google Scholar
34. Kim, W., Wolfenstine, J., Frommeyer, G., Ruano, O.A. and Sherby, O.D., Scripta Metall. 23, 15151520 (1989).Google Scholar
35. Burgraaf, A.J., Theunissen, G.S.A.M. and Winnubst, A.J.A., idem ref. [10] Vol. 1, Processing of Ceramics (1989) pp. 1.8–1.12.Google Scholar
36. Karch, J., Birringer, R. and Gleiter, H., Nature 330, 556558 (1987).Google Scholar
37. Wakai, F., Okamura, H., Kimura, N. and Descamps, P. in New Materials and Processes for the Future (SAMPE, Japan 1989) pp. 267–271.Google Scholar
38. Hermansson, T., Swan, M. and Dunlop, G., idem ref. [10] pp. 3.329–3.333.Google Scholar
39. Wang, J.G. and Raj, R., J. Am. Ceram. Soc. 67, 399409 (1984).Google Scholar
40. Lange, F.F., Dunlop, G.L. and Davis, B.I., J. Am. Ceram. Soc. 69, 237240 (1986).Google Scholar
41. Venkatachari, K.R. and Raj, R., J. Am. Ceram. Soc. 70, 514520 (1987).Google Scholar
42. Panda, P.C., Wang, J. and Raj, R., J. Am. Ceram. Soc. 71, C507–C509 (1988).Google Scholar
43. KeUett, B., Carry, C. and MoceUin, A., idem. ref. [25] pp. 625–630.Google Scholar
44. Kellett, B., Carry, C. and Mocellin, A., J. Am. Ceram. Soc., in press.Google Scholar
45. Duclos, R. and Carry, C., to be published.Google Scholar
46. Pilling, J., idem ref. [25] pp. 475–489.Google Scholar
47. Scott, G. and Tran, V.B., Am. Ceram. Soc. Bull. 64, 11291131 (1985).Google Scholar
48. Nagano, T., Kato, H. et Wakai, F., idem ref. [6] pp. 285–292.Google Scholar