Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T19:51:54.265Z Has data issue: false hasContentIssue false

Microstructures at the Interface Between a-Axis Oriented YBa2Cu3O7−x and NdGaO3(110) Substrate

Published online by Cambridge University Press:  26 February 2011

Hiromi Takahashi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10–13, Shinonome 1-chome Koto-ku, Tokyo 135, Japan
Norio Homma
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10–13, Shinonome 1-chome Koto-ku, Tokyo 135, Japan
Satoru Okayama
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10–13, Shinonome 1-chome Koto-ku, Tokyo 135, Japan
Tadataka Morishita
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10–13, Shinonome 1-chome Koto-ku, Tokyo 135, Japan
Get access

Abstract

The interface between an a-axis oriented YBa2Cu3O7-x film and a NdGaO3(110) substrate has been investigated by cross-section transmission electron microscopy (TEM). The orientational relationship between the a-axis oriented film and substrate is YBa2Cu3O7-x[001] / NdGaO3[001]. This preferentially c-axis aligned direction of the YBa2Cu3O7-x film would be caused by a very small lattice mismatch (0.1%) between b(=a) lattice constant of YBa2Cu3O7-x and of the pseudo-cubic sub-lattices in NdGaO3 at a substrate temperature of 750°C. Two kinds of imperfections have been observed in the crystal lattice of YBa2Cu3O7-x near the interface; One is the deviation of YBa2Cu3O7-x [301] from NdGaO3 [111]. The other type is pair dislocations with a positive and negative Burgers vectors in the YBa2Cu3O7-x (103) planes. These two kinds of defects at the interface would be act to reduce the tensile stress within a distance of about l.lnm from the substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takahashi, H., Aoki, Y., Usui, T., Fromknecht, R., Morishita, T. and Tanaka, S., Physica C. 175, 381 (1991).Google Scholar
2. Lisa, A. and Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).Google Scholar
3. Ramesh, R., Hwang, D., Ravi, T. S., Inam, A., Barner, J. B., Nazar, L., Chan, S. W., Chen, C. Y., Dutta, B., Venkatesan, T., and Wu, X. D., Appl. Phys. Lett. 5, 2243(1990).Google Scholar
4. Eibl, O., Hoenig, H. E., Triscone, J. M., Fischer, O., Antognazza, L. and Brunner, O., Physica C, 172, 365 (1990).Google Scholar
5. Mitchell, T. E., Basu, S. N., Nastasi, M., and Roy, T., Mat. Res. Soc. Symp. Proc. 183, 357 (1990).Google Scholar
6. Basu, S. N., Carim, A. H., Mitchell, T. E., J. Mater. Res. 6, 1823 (1991).Google Scholar
7. Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., and Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).Google Scholar
8. Hwang, D. M., Ying, Q. Y. and Kwok, H. S., Appl. Phys. Lett. 58, 2429 (1991).Google Scholar
9. Takahashi, H., Hase, T., Izumi, H., Ohata, K., Morishita, T., and Tanaka, S., Physica C, 179, 291 (1991).Google Scholar
10. Sasaura, M., Miyazawa, S. and Mukaida, M., J. Appl. Phys. 68, 3643 (1990).Google Scholar
11. Mukaida, M., Miyazawa, S., Sasaura, M. and Kuroda, K., J. J. Appl. Phys. 29, 936 (1990).Google Scholar
12. Homma, N., Okayama, S., Takahashi, H., Yoshida, I., Morishita, T., Tanaka, S., and Haga, T., Yamaya, K., Appl. Phys. Lett. 59, 1383 (1991).Google Scholar