Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:37:49.270Z Has data issue: false hasContentIssue false

Microstructure of Zr-25at. %Al Melt Spun Ribbons.

Published online by Cambridge University Press:  22 February 2011

L. Lutterotti
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050, Mesiano, Trento Italy.
S. K. Pradhan
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050, Mesiano, Trento Italy. Dept.Materials Science, Indian Ass. for the Cultivation of Science, Jadanpur, Calcutta, 700032, India.
S. Gialanella
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050, Mesiano, Trento Italy.
A. R. Yavari
Affiliation:
Institut Polytechnique de Grenoble, LTPCM-CNRS, 38402 St.Martin d’Hères, France.
Get access

Abstract

Following a previous study in which we presented some microstructural aspects of meltspun ribbons having a composition close to Zr-25 at.% Al, we discuss now the crystallography of the phases observed in similar samples. We performed X-Ray diffraction analyses of ribbons and refined the observed crystallographic structures. We could identify a number of stable and metastable structures, according to the actual composition of the ribbons. We also estimated the percentage of each one of these phases. We did the same for some ribbons annealed at 750°C for several times. In this way we could follow the kinetics leading from the initial as-spun condition to the final one, featuring the L12 ordered Zr3Al, as the major phase, and other intermetallic phases of the Zr-Al phase diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McPherson, D.J. and Hansen, M., Trans. ASM, 46, 354 (1954)Google Scholar
2. Schulson, E.M. and Graham, D.B., Acta Met., 24, 615 (1976)Google Scholar
3. Banerjee, S. and Cahn, R.W., Proc. Int.Conf. on Solid-Solid Phase Transformations, AIME ed., 1005, (1981).Google Scholar
4. Banerjee, S. and Cahn, R.W., Acta Met. 31, 1721 (1983)Google Scholar
5. Meng, W.J., Okamoto, P.R., Thompson, L.J., Kestel, B.J. and Rehn, L.E., Appl.Phys.Lett., 53, 1820 (1988).Google Scholar
6. Okamoto, P.R., Rehn, L.E., Pearson, J., Bhadra, R. and Grimsditch, M., J.Less Comm.Met., 140, 231 (1988)Google Scholar
7. Lee, J.L., Choi, W.C., Kim, Y.G. and Lee, J.Y., Acta Met.Mat., 39, 1693 (1991).Google Scholar
8. Fecht, H.J., Han, G., Fu, Z. and Johnson, W.L., J.Appl.Phys., 67, 1744 (1990).Google Scholar
9. Gialanella, S., Yavari, A.R. and Cahn, R.W., Scripta Met.Mat., 26, 1233 (1992).Google Scholar
10. Benameur, T. and Yavari, A.R., J.Mat.Res., 7, 2971 (1992).Google Scholar
11. Ma, E., J.Mat.Res., 9, 592 (1994).Google Scholar
12. Ma, E. and Atzmon, M., Phys.Rev.Lett., 67, 1126 (1991)Google Scholar
13. Yavari, A.R., Gialanella, S., Benameur, T., Cahn, R.W. and Bochu, B., J.Mat.Res., 8, 242 (1993).Google Scholar
14. Lutterotti, L., Scardi, P. and Maistrelli, P., J.Appl.Cryst., 25, 459 (1992).Google Scholar
15. Haasen, P., Physical Metallurgy, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1986) p. 331.Google Scholar
16. Banerjee, S., Private communication.Google Scholar
17. Binary Alloy Phase Diagrams, 2nd ed., ed. by Massalski, T.B., Okamoto, H., Subramania, P.R. and Kacprzak, L., ASM Int.(1992).Google Scholar