Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T21:42:44.206Z Has data issue: false hasContentIssue false

Microstructure of YBCO and YBCO/SrTiO3/YBCO PLD Thin Films on Sapphire for Microwave Applications

Published online by Cambridge University Press:  10 February 2011

M. Lorenz
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, D-04103 Leipzig,Germany, [email protected]
H. Hochmuth
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, D-04103 Leipzig,Germany, [email protected]
D. Natusch
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, D-04103 Leipzig,Germany, [email protected]
T. Thärigen
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, D-04103 Leipzig,Germany, [email protected]
V. L. Svetchnikov
Affiliation:
National Center for High Resolution Electron Microscopy, 2628 AL Delft, The Netherlands
H. W. Zandbergen
Affiliation:
National Center for High Resolution Electron Microscopy, 2628 AL Delft, The Netherlands
C. Schäfer
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle/Saale, Germany
G. Kästner
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle/Saale, Germany
Get access

Abstract

A large-area pulsed laser deposition process for high-quality YBa2Cu3O7−δ (YBCO) thin films on both sides of R-plane sapphire substrates with CeO2 buffer layer is used routinely to optimize planar microwave filters for satellite and mobile communication systems. With the experience of more than 700 double-sided 3-inch diam. YBCO:Ag films a high degree of reproducibility of jc values above 3.5 MA/cm2 and of state of the art R5 values is reached. TEM cross sections of the large-area and double-sided PLD-YBCO:Ag thin films on R-plane sapphire with CeO2 buffer layers show typical defects like stress modulation, stacking faults, a-axis oriented grains, precipitates and interdiffusion layers. YBCO films on SrTiO3 / YBCO* / CeO2 film systems on R-plane sapphire wafers have more growth defects compared to bare CeO2 buffers on sapphire but show as microwave resonators encouraging electrical tunability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hein, M., High-Temperature-Superconductor Thin Films at Microwave Frequencies, Springer Tracts in Modern Physics 155 (Springer, Berlin, Heidelberg, New York, 1999).Google Scholar
2. Lorenz, M., Hochmuth, H., Natusch, D., Böner, H., Lippold, G., Kreher, K. and Schmitz, W., Appl. Phys. Lett. 68, 3332 (1996).10.1063/1.116048Google Scholar
3. Lorenz, M., Hochmuth, H., Natusch, D., Börner, H., Thärigen, T., Patrikarakos, D. G., Frey, J., Kreher, K., Senz, S., Kätner, G., Hesse, D., Steins, M., Schmitz, W., IEEE Transact. Appl. Supercond. 7, 1240 (1997).10.1109/77.620738Google Scholar
4. Lorenz, M., Hochmuth, H., Frey, J., Börner, H., Lenzner, J., Lippold, G., Kaiser, T., Hein, M., Müller, G., Inst. Phys. Conf. Series 158, 283 (1997).Google Scholar
5. Lorenz, M., Hochmuth, H., Natusch, D., Lippold, G., Svetchnikov, V. L., Kaiser, T., Hein, M., Schwab, R., Heidinger, R., IEEE Transact. Appl. Supercond. 9, 1936 (1999).10.1109/77.784839Google Scholar
6. Kinder, H., Berberich, P., Prusseit, W., Rieder-Zecha, S., Semerad, R., Utz, B., Physica C 282 – 287, 107 (1997).10.1016/S0921-4534(97)00230-XGoogle Scholar
7. Hochmuth, H. and Lorenz, M., Physica C 265, 335 (1996).10.1016/0921-4534(96)00303-6Google Scholar
8. Schwab, R., Heidinger, R., Geerk, J., Ratzel, F., Lorenz, M., Hochmuth, H., Proc. 23rd Int. Conf. on Infrared and Millimeter Waves, University of Essex, Colchester, U.K., September 7 - 11 (1998).Google Scholar
9. Kaiser, T., Bauer, C., Diete, W., Hein, M., Kallscheuer, J., Müller, G., Piel, H. Inst. Phys. Conf. Series 158, 45 (1997).Google Scholar
10. Traeholt, C., Wen, J. G., Svetchnikov, V., Delsing, A., and Zandbergen, H. W., Physica C 206, 318 (1993).10.1016/0921-4534(93)90531-TGoogle Scholar
11. Kästner, G., Schäfer, C., Senz, S., Kaiser, T., Hein, M., Lorenz, M., Hochmuth, H., Hesse, D., Supercond. Sci. Technol. 12, 366 (1999).10.1088/0953-2048/12/6/307Google Scholar
12. Beutum, P. J. M. van, Driessen, F. A. J. M., Gerritsen, J. W., Kempen, H. van, and Schreurs, L. W. M., J. Crystal Growth 98, 551 (1989).Google Scholar
13. Keuls, F.W. Van, Romanovsky, R.R., Miranda, F.A., Integrated Ferroelectrics 22, 373 (1998).10.1080/10584589808208057Google Scholar
14. Boikov, Y. A., Ivanov, Z. G., Kiselev, A. N., Olsson, E., Claeson, T., J. Appl. Phys. 78, 4591 (1995).10.1063/1.359804Google Scholar