Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:37:14.348Z Has data issue: false hasContentIssue false

Microstructure of sputter-deposited noble metal-incorporated oxide thin films patterned by means of laser interference

Published online by Cambridge University Press:  22 June 2011

Rodolphe Catrin*
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
Thomas Gries
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
David Horwat
Affiliation:
Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.
Sylvie Migot
Affiliation:
Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.
Frank Muecklich
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
*
*Corresponding author. Tel.: +49 681 302 70548; fax: +49 681 302 70502. E-mail address: [email protected] (R. Catrin)
Get access

Abstract

Laser interference patterning-induced microstructural modifications have been investigated in two noble metal-incorporated oxide thin film systems: Pd0.25Pt0.75Ox and gold-incorporated yttria-stabilized zirconia - Au-YSZ. Transmission electron microscopy was used to investigate the influence of the laser treatment on the microstructure of the samples. In the case of Pd0.25Pt0.75Ox, the formation of a nanocomposite arrangement resulted from the precipitation of metal nanograins in the oxide matrix triggered by laser irradiation. In Au-YSZ, the starting microstructure consisted of gold nanograins embedded in a YSZ matrix. A noticeable growth and coalescence of gold nanograins occurred near the surface in the region of maximum interference. Simultaneously, a foamy morphology, mostly consisting of gold crystals, was formed at the film surface. In contrast to thermal annealing, the laser treatment proposed here is a fast procedure to partially relocate gold at the film surface and provide a local solid lubrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

aCurrently at Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.

References

REFERENCES

1. Pierson, J.F., Baija, M., Horwat, D., J. Cryst. Growth 311 (2009), pp. 349354.Google Scholar
2. Horwat, D., Endrino, J.L., Boreave, A., Karoum, R., Pierson, J.F., Weber, S., Anders, A., Vernoux, Ph., Catal. Comm. 10 (2009), pp. 14101413.Google Scholar
3. Catrin, R., Horwat, D., Pierson, J.F., Migot, S., Hu, Y., Muecklich, F., Appl. Surf. Sci. 257 (2011), pp. 52235229.Google Scholar
4. Muecklich, F., Lasagni, A., Daniel, C., Int. J. Mater. Res. 97 (2006), pp. 13371344.Google Scholar
5. Catrin, R., Lasagni, A., Gachot, C., Schmid, U., Mücklich, F., Adv. Eng. Mat. 10 (2008), pp. 466470.Google Scholar
6. Gachot, C., Catrin, R., Lasagni, A., Schmid, U., Mücklich, F., Appl. Surf. Sci 255 (2009), pp. 56265632.Google Scholar
7. Detemple, E., Leibenguth, P., Gachot, C., Mücklich, F., Thin Solid Films 519 (2010), pp. 736741.Google Scholar
8. Horwat, D., Zakharov, D.I., Endrino, J.L., Soldera, F., Anders, A., Migot, S., Karoum, R., Vernoux, Ph., Pierson, J.F., Surf. Coat. Technol., doi:10.1016/j.surfcoat.2010.12.021.Google Scholar
9. Bond, G.C., Thompson, D.T., Gold Bull. 33 (2000), pp. 4151.Google Scholar
10. Voevodin, A. A., Hu, J. J., Fitz, T. A., Zabinski, J. S., Surf. Coat. Technol. 146-147 (2001), pp. 351356.Google Scholar