Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:32:06.313Z Has data issue: false hasContentIssue false

Microstructure of Passivated Al-Cu and Al-Si-Cu Conductor Lines: Interaction of Precipitates, Defects and Mechanical Stresses

Published online by Cambridge University Press:  15 February 2011

A. G. Dirks*
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

In this paper the results of our investigations of passivated, narrow lines of both Al-Cu and Al-Si-Cu (0.4 at.% Cu, 1.0 at.% Si) by transmission electron microscopy will be presented. Thin alloy films have been deposited on either oxide or refractory-metal films. During the standard anneal treatment of 0.5 h at 400 °C the atomic mobility is relatively high. At this temperature the binary Al-Cu films are one-phase alloys. Depending on the cooling rate, transformation occurs into a two-phase mixture of (initially) finely distributed, Cu-enriched particles and Al. The precipitates eventually form the equilibrium θ-Al2Cu phase, which tends to form large conglomerates upon further annealing. In contrast, the ternary Al-Si-Cu films are two-phase alloys already at 400 °C: at this temperature Si precipitates are pre:sent in the Al matrix, whereas the onset of Cu precipitation is not far below this temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Korhonen, M.A., Liu, T., Brown, D.D., and Li, C.-Y., Mat. Res. Soc. Symp. Proc. 391, 411(1995)Google Scholar
2. Hu, C.-K., Thin Solid Films 260, 124(1995)Google Scholar
3. Børgesen, P., Korhonen, M.A., and Li, C.-Y., Thin Solid Films, 220, 8(1992)Google Scholar
4. Gardner, D.S., and Flinn, P., IEEE Trans. on Electr. Devices, 35, 2160(1988)Google Scholar
5. Besser, P.R., Marieb, T.N., and Bravman, J.C., Mat. Res. Soc. Symp. Proc. 308, 249 (1993)Google Scholar
6. Bower, A.F., and Freund, L.B., J. Appl. Phys. 74, 3855(1993)Google Scholar
7. Korhonen, M.A., Black, R.D., and Li, C.-Y., J. Appl. Phys. 69, 1748(1991)Google Scholar
8. Yost, F.G., Amos, D.E., and Romig, A.D., IEEE/IRPS Symp. Proc. (1989), p.193 Google Scholar
9. Knowlton, B.D., Clement, J. J., Frank, R.I., and Thompson, C.V., Mat. Res. Soc. Symp. Proc. 391, 189(1995)Google Scholar
10. Morris, J.W., Kim, C., and Kang, S.H., Mat. Res. Soc. Symp. Proc. 391, 353(1995)Google Scholar
11. Knowlton, B.D., Frank, R.I., and Thompson, C. V., Mat. Res. Soc. Symp. Proc. 391, 361(1995)Google Scholar
12. Kordić, S., Wolters, R.A.M., Augur, R.A., and Dirks, A.G., Mat. Res. Soc. Symp. Proc. 391, 473(1995)Google Scholar
13. Massalski, T.B., Murray, J.L., Bennett, L.H., and Baker, H., in Binary Alloy Phase Diagrams, American Soc. for Met., Metals Park, Ohio (1986) p.103, p.164Google Scholar
14. van Bueren, H.G., Imperfections in Crystals, North-Holland Publishing Comp., Amsterdam, 1961, p. 135 Google Scholar
15. Knorr, D.D., and Rodbell, K.P., Mat. Res. Soc. Symp. Proc. 356, xxx(1995)Google Scholar
16. Dirks, A.G., Wolters, R.A.M., and De Veirman, A.E.M., Mat. Res. Soc. Symp. Proc. 260, 787(1992)Google Scholar
17. Balluffi, R.W., and Cahn, J.W., Acta Metall. 29, 493(1981)Google Scholar
18. Mondolfo, L.F., Aluminium Alloys: Structure and Properties, Butterworths, London, 1976, p.514 Google Scholar