Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:07:17.325Z Has data issue: false hasContentIssue false

Microstructure of Metastable Metallic Alloy Films Produced by Laser Breakdown Chemical Vapor Deposition and Ion Implantation

Published online by Cambridge University Press:  26 February 2011

S. K. Henon
Affiliation:
Naval Chemical & Metallurgical Laboratory, Naval Dockyard, Tiger Gate, Bombay 400023, India
T. R. Jervis
Affiliation:
Materials Science and Technology Division, Mailstop E549, Los Alamos National Laboratory, Los Alamos, NM 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Mailstop E549, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Thin films produced by laser breakdown chemical vapor deposition from nickel and iron carbonyls and by implanting Ni foils with varying levels of C have been characterizea by transmission electron microscopy. Decomposition of Ni(CO)4 produces polycrystalline films of fcc Ni and metastable ordered nexaogonal Ni3C. This metastable phase is identical to that produced by gas carburization, rapid solidification of Ni-C melts, and ion implantation ot C into Ni at low;co ncentrations. Increasing the H2 content in the gas mixture during laser deposition reduces the grain size of the films significantly witn grain sizes smaller than 10 nanometers produced. Laser uecomposition of Fe(CO)5 produces films with islands of fcc gamma-Fe and finely dispersed metastable Fe3C (Cementite). In addition, the ferrous oxides Fe2O3 and Fe3O4 were found in these samples. Implants of C into pure Ni foils at 77°K and at a concentration of 35 at.% produced amorphous layers. Implants at the same dose at room temperature did not proouce amorphous layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jervis, T. k., J. Appl. Phys. 58 1400 (1985).Google Scholar
2. Jervis, T. R. & Newkirk, L. R., J. Mat. Res. 1 420 (1986).Google Scholar
3. Nayakura, S., J. Phys. Soc. Jap. 12 482 (1957).Google Scholar
4. Nagakura, S., J. Phys. Soc. Jap. 13 1005 (1958).Google Scholar
5. Nishitani, S. R., Ishihara, K. N., Suzuki, R. O., & Singu, P. H., J. Mat. Sci. Lett. 4 872 (1985).Google Scholar
6. Edington, J. W., Electron Diffraction in the Electron Microscope, Monograph 2 in Practical Electron Microscopy- Materials Science, p. 110, Phillips, Eindhoven, (1975).Google Scholar
7. Hansen, M., Constitution of Binary Alloys, McGraw Hill, New York (1958).Google Scholar
8. Ohtani, H., Masebe, M., & Nishizawa, T., Trans. I. S. I. J. 24 857 (1984).Google Scholar
9. Ershova, T. F., Kamenetskaya, D. S., & Il'ina, L. P., Izv. Akad. Nauk. SSSR, Met. 4 201 (1981).Google Scholar
10. Ruhl, R. C. & Cohen, H., Scripta Metall. 1 73 (1967).Google Scholar
11. Stevens, W. & Haynes, A. G., J. I. S. I. 183 349 (1956).Google Scholar
12. kouerts, L. S., Trans. AIME, 191 203 (1953).Google Scholar
13. Samuel, F. H., Zeit. Metallkde. 76 792 (1985).Google Scholar
14. Nagakura, S., J. Phys. Soc. Jap. 14 186 (1959).Google Scholar
15. Follstaedt, D. M. & Knapp, J. A., “Binary & Ternary Amorphous Alloys of ion Implanted Fe-Ti-C”, To be Published in Mat. Res. Soc. Symp. Proc. 51.Google Scholar