Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T07:37:30.810Z Has data issue: false hasContentIssue false

Microstructure of Ca3Co4O9 Single Crystals and Thin Films

Published online by Cambridge University Press:  01 February 2011

Yufeng Hu
Affiliation:
[email protected], Brookhaven National Laboratory, Building 480, Upton, New York, 11973, United States, 631-344-5129, 631-344-4071
Eli Sutter
Affiliation:
Weidong Si
Affiliation:
Qiang Li
Affiliation:
Get access

Abstract

We present a comparative study of the microstructure of Ca3Co4O9 single crystals and c-axis oriented Ca3Co4O9 thin films grown on glass substrates. Though both crystals and films have similar values of Seekbeck coefficient and electric resistivity at room temperature, their microstructures are rather different. Extensive high resolution transmission electron microscopy (TEM) studies reveal that the films grown on glass substrates have abundant stacking faults, which is in contrast to the perfect crystalline structure found in the single crystal sample. The c-axis lattice constants derived from the x-ray diffraction (XRD) and TEM measurements for the single crystal sample and the thin film are virtually the same, suggesting that the thin film on the glass substrate was not strained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., and Uchokura, K., Phys. Rev. B, 56, 12685–87 (1997).Google Scholar
2. Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H., J. Mater. Chem., 9, 1659–60 (1999).Google Scholar
3. Funahashi, R., Matsubara, I., and Sodeoka, S., Appl. Phys. Lett., 76 2385–87 (2000).Google Scholar
4. Hebert, S., Lambert, S., Pelloquin, D., and Maignan, A., Phys. Rev. B, 64, 172101 (2001).Google Scholar
5. Pelloquin, D., Maignan, A., Hebert, S., Martin, C., Hervieu, M., Michel, C., Wang, L. B., and Raveau, B., Chem. Mater., 14, 3100–05 (2002).Google Scholar
6. Miyazaki, Y., Miura, T., Ono, Y., and Kajitani, T., Jpn. J. Appl. Phys., 41, L84951 (2002).Google Scholar
7. Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H., Chem. Mater., 12, 2424–27 (2000).Google Scholar
8. Funahashi, R., Matsubara, I., Sodeoka, S., Ikuta, H., Takeuchi, T., and Mizutani, U., Jpn. J. Appl. Phys., Part 2, 39, L112729 (2000).Google Scholar
9. Miyazaki, Y., Kudo, K., Akoshima, M., Ono, Y., Koike, Y., and Kajitani, T., Jpn. J. Appl. Phys., Part 2, 39, L53133 (2000).Google Scholar
10. Masset, A., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanek, J., Phys. Rev. B, 62, 166–75 (2000).Google Scholar
11. Shikano, M. and Funahashi, R., Appl. Phys. Lett., 82, 1851–53 (2003).Google Scholar
12. Yoshida, Y., Kawai, T., Takai, Y., and Yamaguchi, M., J. Ceram. Soc. Japan, 110, 1080 (2002).Google Scholar
13. Matsubara, I., Funahashi, R., and Shikano, M., Appl. Phys. Lett., 80, 4729–31 (2002).Google Scholar
14. Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., Lippmaa, M., Appl. Surf. Sci., 197–198, 442–47 (2002).Google Scholar
15. Eng, H. W., Prellier, W., Hebert, S., Grebille, D., Mechin, L., and Mercey, B., J. Appl. Phys., 97, 013706 (2005).Google Scholar
16. Hicks, L. D. and Dresselhaus, M. D., Phys. Rev. B, 47, 12727 (1993).Google Scholar
17. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature, 413, 597603 (2001).Google Scholar
18. Hu, Y. F., Sutter, E., Si, W. D., and Li, Qiang, Appl. Phys. Lett. 87, 171912 (2005).Google Scholar