Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T23:59:32.360Z Has data issue: false hasContentIssue false

Microstructure Characterization of Amorphous Silicon Films by Effusion Measurements of Implanted Helium

Published online by Cambridge University Press:  17 June 2013

W. Beyer
Affiliation:
Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, D-12489 Berlin, Germany IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany
W. Hilgers
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Lennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
F.C. Maier
Affiliation:
Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany
N.H. Nickel
Affiliation:
Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, D-12489 Berlin, Germany
F. Pennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
P. Prunici
Affiliation:
Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany
Get access

Abstract

An important property of thin film silicon and related materials is the microstructure which may involve the presence of interconnected and isolated voids. We report on effusion measurements of implanted helium (He) to detect such voids. Several series of hydrogenated and unhydrogenated amorphous silicon films prepared by the methods of plasma deposition, hot wire deposition and vacuum evaporation were investigated. The results show common features like a He effusion peak at low temperatures attributed to He out-diffusion through a compact material or through interconnected voids, and a He effusion peak at high temperatures attributed to He trapped in isolated voids. While undoped plasma-grown device-grade hydrogenated amorphous silicon (a-Si:H) films show a rather low concentration of such isolated voids, its concentration can be rather high in doped a-Si:H, in unhydrogenated evaporated material and others.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beyer, W., Einsele, F., in Advanced Characterization Techniques for Thin Film Solar Cells, edited by Abou-Ras, D., Kirchartz, T., Rau, U. (Wiley-VCH, Weinheim, Germany, 2011) p. 449.CrossRefGoogle Scholar
Beyer, W. in Thin-Film Silicon Solar Cells, edited by Shah, A. (CRC Press, Boca Raton, FL, 2010) p. 64.Google Scholar
Chabal, Y.J., Patel, C.K.N., Reviews of Modern Physics 59, 835 (1987).CrossRefGoogle Scholar
Beyer, W., Phys. Status Solidi (c) 1, 1144 (2004).CrossRefGoogle Scholar
Beyer, W., Hilgers, W., Prunici, P., Lennartz, D., J. Non-Cryst. Solids 358, 2023 (2012).CrossRefGoogle Scholar
Zanzig, L., Berichte des Forschungszentrums Jülich 3087 (Jülich, Germany, 1995).Google Scholar
Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).CrossRefGoogle Scholar
Anderson, O.L., Stuart, D.A., J. Am. Ceram. Soc. 37, 573 (1954).CrossRefGoogle Scholar
Cerofolini, G.F., Corni, F., Frabboni, S., Nobili, C., Ottaviani, G., Tonini, R., Materials Science and Engineering R27,1 (2000).Google Scholar
Beyer, W., Hilgers, W., Lennartz, D., Pennartz, F., Prunici, P., MRS Symp. Proceedings 1426, 341 (2012).CrossRefGoogle Scholar
Beyer, W., Physica B 170, 105 (1991).CrossRefGoogle Scholar
Lang, D.V., Cohen, J.D., Harbison, J.P., Phys. Rev. B 25, 5285 (1982).CrossRefGoogle Scholar
Street, R.A., Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991) p. 147.CrossRefGoogle Scholar
Schade, H. in Thin-Film Silicon Solar Cells, edited by Shah, A. (CRC Press, Boca Raton, FL, 2010) p. 269.CrossRefGoogle Scholar