Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T20:05:09.060Z Has data issue: false hasContentIssue false

Microstructure and Thermophysical Characterization of Mixed Oxide Fuels

Published online by Cambridge University Press:  31 January 2011

Franz J. Freibert
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Tarik A. Saleh
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Fred G. Hampel
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Daniel S. Schwartz
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Jeremy N. Mitchell
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Charles C. Davis
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Angelique D. Neuman
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Stephen P. Willson
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
John T. Dunwoody
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Get access

Abstract

Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U1-x-y-zPuxAmyNpz)O2 fabricated in the compositional ranges of 0.19≤x≤0.3 Pu, 0≤y≤0.05 Am, and 0≤z≤0.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14μm; however, electron microprobe analysis revealed segregation of NpO2 in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5% theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56×10−6/°C-1 for temperature range (100°C<T<1500°C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Markin, T.L. and Street, R.S. J. Inorg. Nuc. Chem. 29, 2265(1967).Google Scholar
2. Freibert, F.J. Mitchell, J.N. Saleh, T.A. Schwartz, D.S. “Thermophysical Properties of Coexistent Phases in Plutonium”; accepted for publication in the IOP Conf. Series: Materials Science and Engineering(2009); Los Alamos National Laboratory Publication. No. LAUR-09-00291(2009).Google Scholar
3. Güldner, R. and Schmidt, H. J. Nucl. Mater. 178, 152(1991).Google Scholar
4. Freibert, F.J. Dooley, D. Miller, D. Los Alamos National Laboratory Publication No. LAUR-05-9007, 2005.Google Scholar
5. Migliori, A. Baiardo, J.P. Darling, T.W. and Freibert, F.J. in Experimental Methods in the Physical Sciences: Modern Acoustical Techniques for the Measurement of Mechanical Properties 39, edited by Levy, M. Bass, H.E. and Stern, R. (Academic Press, San Diego, 2001) p. 189.Google Scholar
6. Migliori, A. Pantea, C. Ledbetter, H. Stroe, I. Betts, J.B. Mitchell, J.N. Ramos, M. Freibert, F.J. Dooley, D. Harrington, S. Mielke, C.H. JASA 122, 1994(2007).Google Scholar
7. Mitchell, J.N. Freibert, F.J. Schwartz, D.S. and Bange, M.E. J. Nuc. Mat. 385, 95(2009).Google Scholar
8.Theoretical density data derived from lattice constants published by Skavdahl, R.E. and Chikalla, T.D. in Plutonium Handbook: A Guide to the Technology, Vol I and II, edited by Wick, O.J. (American Nuclear Society, La Grange Park, Illinois, 1980), p. 261.Google Scholar
9. Padel, A. and Novion, Ch. de, J. Nucl. Mater. 33, 40(1969).Google Scholar
10. Nutt, A.W. Allen, A.W. and Handwerk, J.H. J. Am. Ceram. Soc. 53, 205(1970).Google Scholar
11. Martin, D.G. J. Nuc. Mat. 152, 94(1988).Google Scholar