No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
In this paper we investigate the microstructural accommodation of nonstoichiometry in (BaxSr1-x)Ti1+yO3+Z thin films grown by chemical vapor deposition. Films with three different (Ba+Sr)/Ti ratios of 49/51 (y=0.04 in the notation of the formula above), of 48/52 (y = 0.08) and of 46.5/53.5 (y=0.15), were studied. High-resolution electron microscopy is used to study the microstructure of the BST films. High-spatial resolution electron energy-loss spectroscopy (EELS) is used to reveal changes in chemistry and local atomic environment both at grain boundaries and within grains as a function of titanium excess. We find an amorphous phase at the grain boundaries and grain boundary segregation of excess titanium in the samples with y=0.15. In addition, EELS is also used to show that excess titanium is being partially accommodated in the grain interior. Implications for the film electrical and dielectric properties are outlined.