Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:31:38.108Z Has data issue: false hasContentIssue false

Microstructure and Microchemistry of Interfaces in Structural Ceramic Composites

Published online by Cambridge University Press:  10 February 2011

K. B. Alexander
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6376
P. F. Becher
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6376
P. M. Rice
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6376
D. Braski
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6376
E. Y. Sun
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6376
Get access

Abstract

The performance of reinforced ceramics, particularly the toughness and creep resistance, is often determined by the nature of the interface between the reinforcement and the ceramic matrix. Specially-designed experiments to investigate the role of the interfacial characteristics on toughening mechanisms and crack propagation in reinforced (silicon carbide whisker reinforced alumina) and self-reinforced (silicon nitride) ceramic composites will be described. In the whisker-reinforced composites, the interfacial topography and chemistry were of primary importance, whereas in the silicon nitride materials the formation of interfacial phases and glassy-phase chemistry influenced the interfacial debonding process. The composite interfaces were characterized by high resolution electron microscopy and high spatial resolution microchemical analysis, including energy-dispersive X-ray and electron energy loss spectroscopy. Results from energy-filtered images from ceramic interfaces will also be shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wei, G. C. and Becher, P. F., Am. Ceram. Soc. Bull., 64(2) 298 (1985).Google Scholar
2. Becher, P. F., Hsueh, C. H., Alexander, K. B., Lin, H. T., Warwick, W. H., Westmoreland, C. G., and Waters, S. B., Silicates Industriels, 9–10 239 (1995).Google Scholar
3. Rutile, M. and Evans, A. G., Progress in Materials Science, 33 85 (1989).Google Scholar
4. Tiegs, T. N., Becher, P. F. and Harris, L. A., in Ceramics Microstructure '86: Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Materials Science Reserach, Vol. 21, Plenum Press, New York, 1987), pp. 911917.Google Scholar
5. Sun, E. Y., Becher, P. F., Hwang, S-L., Waters, S. B., Pharr, G. M. and Tsui, T. Y., J. Non-Cryst. Solids, in press.Google Scholar
6. Braski, D. and Alexander, K. B., J. Mat. Research 10(4) 1016 (1995).Google Scholar
7. Plucknett, K. P., Becher, P. F., and Alexander, K. B., Microscopy, J., in press.Google Scholar
8. Becher, P. F., Hsueh, C.-H., Alexander, K. B., and Sun, E. Y., J. Am. Ceram. Soc. 79(2) 298 (1995).Google Scholar
9. Caputo, A. J., Stinton, D. P., Lowden, R. A. and Besmann, T. M., Bull. Am. Ceram. Soc, 66(2) 368 (1987).Google Scholar
10. Alexander, K. B. and Becher, P. F., in Proc, of the Electron Microscopy Society of America (Vol. 49, San Francisco Press, Inc., San Francisco, CA, 1991), pp. 920–1.Google Scholar
11. Alexander, K. B., Angelini, P. and Becher, P. F., in Advanced Composite Materials, edited by Sacks, M. D. (Vol. 19, American Ceramic Society, Westerville, OH, 1991), 245.Google Scholar
12. Alexander, K. B., Angelini, P. and Becher, P. F., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J. and Dahmen, U., eds., Materials Research Society, Pittsburgh, PA, 183 (1990) 273.Google Scholar
13. Karasek, K. R., Bradley, S. A., Dunner, J. T., Yeh, H. C., Schienle, J. L. and Fang, H. T., J. Am. Ceram. Soc, 72(10) 1907 (1989).Google Scholar
14. Homeny, J., Waughn, W. L. and Ferber, M. K., J. Am. Ceram. Soc, 73(2) 394 (1990).Google Scholar
15. Becher, P. F., Hsueh, C. H., Angelini, P. and Tiegs, T. N., J. Am. Ceram. Soc, 71(12) 1050 (1988).Google Scholar
16. Lange, F. F., J. Am. Ceram. Soc, 56 518 (1973).Google Scholar
17. Hirao, K., Ohashi, M., Brito, M. E., and Kanzaki, S., J. Am. Ceram. Soc., 78(6) 1687 (1995).Google Scholar
18. Clarke, D. R., J. Am. Ceram. Soc, 70 15 (1987).Google Scholar
19. Taima, Y., Urashima, K., Watanabe, M. and Matsui, Y., in Ceramic Transactions, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H., (Vol. 1, Am. Ceram. Soc, Westerville, OH, 1988) pp 1034–41.Google Scholar
20. Wotting, G. and Ziegler, G., Ceramics International, 10(1) (1984) 1822.Google Scholar
21. Sun, E. Y., Becher, P. F., Waters, S. B., Hsueh, C-H., Plucknett, K. P. and Hoffmann, M. J., to be published in Ceramic Microstructure '96: Control at the Atomic Level, edited by Tomsia, A. P. and Glaser, A. (Plenum Press, New York, 1996).Google Scholar
22. Peterson, I. M. and Tien, T. Y., submitted to J. Am. Ceram. Soc, 1996.Google Scholar
23. Becher, P. F., Alexander, K. B., Hwang, S. L., Sun, E. Y., Westmoreland, C. G., and Waters, S. B., J. Am. Ceram. Soc, in press.Google Scholar
24. Sun, E. Y., Alexander, K. B., Becher, P. F., and Hwang, S. L., J. Am. Ceram. Soc, 79(10) 2626(1996).Google Scholar
25. Tanaka, I., Adachi, H., Nakayasu, T. and Yamada, T., to be published in Ceramic Microstructure '96: Control at the Atomic Level, edited by Tomsia, A. P. and Glaser, A. (Plenum Press, New York, 1996).Google Scholar
26. Krivank, O. L. et al. Microsc. Microanal. Microstruct. 2 315 (1991); and also 3 187 (1992).Google Scholar
27. Bentley, J., Hall, E. L. and Kenik, E. A., in Proc. Microscopy and Microanalysis 1995. edited by Bailey, G. W., Ellisman, M. H., Hennigar, R. A. and Zaluzec, N. J. (Jones and Begell Publishing, New York, 1995) pp. 268–9.Google Scholar
28. Sun, E. Y., Becher, P. F., Hsueh, C-H. and Plucknett, K. P., “Tailoring the Intergranular Phases in Silicon Nitride for Improved Toughness”, this book.Google Scholar