Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T07:48:44.051Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of Ni3Al-Based Alloys Reinforced with Particulates

Published online by Cambridge University Press:  26 February 2011

C. G. Mckamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
C. A. Carmichael
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
Get access

Abstract

Hot-extrusion was used to produce Ni3Al-based alloys to which 10 vol% TiN, NbC, HfO2, or HfN was added for reinforcement. The TiN, NbC, and HfO2 particulates produced Ni3Al-matrix composites in which no reaction was noted at the particle-matrix interface. However, the addition of HfN resulted in extensive reaction in which the hafnium appeared to diffuse into the matrix. Microstructures of this alloy showed a complex array of phases and voids where the HfN particles are presumed to have been originally. Hot hardness, compression, and compression creep tests were performed on specimens cut from the extruded bar of each alloy. No significant strengthening was observed for the alloys containing TiN, NbC, or HfO2. However the HfN-containing alloy did show significant strengthening in simple compression and compression creep. This presentation will include microstructures and the results of the mechanical properties tests.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hack, John E. and Amateau, Maurice F., eds., Mechanical Behavior of Metal-Matrix Composites (The Metallurgical Society of AIME, 1982).Google Scholar
2. Lemkey, F. D., Fishman, S. G., Evans, A. G., and Strife, J. R., eds., High Temperature/High Performance Composites, (Mater. Res. Soc. Proc. Vol. 120, Pittsburgh, 1988).Google Scholar
3. Anton, D. L., McMeeking, R., Miracle, D., and Martin, P., eds., Intermetallic Matrix Composites. (Mater. Res. Soc. Proc. Vol. 194, Pittsburgh, 1990).Google Scholar
4. Yang, J.-M., Kao, W. H., and Liu, C. T., Mater. Sci. and Eng. A 107, 81 (1989).CrossRefGoogle Scholar
5. Liu, C. T., White, C. L., and Horton, J. A. Jr., Acta Metall. 33 213 (1985).Google Scholar
6. Liu, C. T., Proc. Micon 1986 Symposium, (ASTM, Feb. 1988), p. 222.Google Scholar
7. Yang, J.-M., Kao, W. H. and Liu, C. T., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., et al. . (Mater. Res. Soc. Proc. Vol. 133 Pittsburgh, PA 1989) pp. 453458.Google Scholar
8. Yang, J. M., Kao, W. H., and Liu, C. T., Met. Trans. A 20, 2459 (1989).CrossRefGoogle Scholar
9. Yang, J. M., Kao, W. H., and Liu, C. T., Mat. Sci. and Eng. A107, 81 (1989).CrossRefGoogle Scholar
10. Nourbakhsh, S., Liang, F. L, and Margolin, H., Adv. Man. Proc. 3 (1), 57 (1988).Google Scholar
11. Nourbakhsh, S., Liang, F.-L., and Margolin, H., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. Vol. 133. Pittsburgh, PA 1989) pp. 459464.Google Scholar
12. Moore, B., Bose, A., German, R. M., and Stoloff, N. S., High Temperature/High Performance Composites. edited by Lemkey, F. D., Fishman, S. G., Evans, A. G., and Strife, J. R. (Mater. Res. Soc. Proc. Vol. 120, Pittsburgh, PA 1988) pp. 5156.Google Scholar
13. Rack, H. J. and Niskanen, P. W., Light Metal Age, Feb., 9 (1984).Google Scholar
14. Povirk, G. L., Horton, J. A. Jr., McKamey, C. G., Tiegs, T. N., and Nutt, S. R., J. Mater. Sci. 23(11), 3945 (1988).CrossRefGoogle Scholar
15. McKamey, C. G., Povirk, G. L., Horton, J. A., Tiegs, T. N., and Ohriner, E. K., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. Vol. 133, Pittsburgh, PA 1989) pp. 609614.Google Scholar
16. McKamey, C. G. and Lee, E. H., in Intermetallic Matrix Composites, edited by Anton, D. L., McMeeking, R., Miracle, D., and Martin, P. (Mater. Res. Soc. Proc. Vol. 194 Pittsburgh, 1990).Google Scholar
17. Koch, Carl C., in High Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Proc. Vol. 81, Pittsburgh, PA 1987) pp. 36980.Google Scholar
18. Jang, J.S.C. and Koch, C. C., Scripta Metall. 22, 677 (1988).Google Scholar
19. Jang, S. C., Donnelly, S. G., Godvarti, P., and Koch, C. C., Int. J. Powder Metall. 24 315 (1988).Google Scholar
20. Rigney, J. D., Khadkikar, P. S., Lewandowski, J. J., and Vedula, K., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. Vol. 133, Pittsburgh, PA 1989) pp. 60308.Google Scholar
21. Fuchs, G. E., J. Mater. Res. 5(8), 1649 (1990).Google Scholar
22. Fuchs, G. E., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. Vol. 133, Pittsburgh, PA 1989) pp. 61520.Google Scholar
23. Camus, G. M., Duquette, D. J., and Stoloff, N. S., J. Mater. Res. 5(5), 950 (1990).CrossRefGoogle Scholar
24. Wang, Rong, submitted to J. Mater. Res.Google Scholar
25. Misra, A. K., Thermodynamic Analysis of Compatibility of Several Reinforcement Materials with Beta Phase NiAl Alloys, NASA Contractor Report 4171, 1988.Google Scholar
26. Liu, C. T., Jemian, W., Inouye, H., Cathcart, J. V., David, S. A., Horton, J. A., and Santella, M. L., Initial Development of Nickel and Nickel–Iron Aluminides for Structural Uses, ORNL–6067, August 1984.Google Scholar