Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T07:47:25.477Z Has data issue: false hasContentIssue false

Microstructural Studies of Co Silicide Layers Formed on SiGe and SiGeC

Published online by Cambridge University Press:  03 September 2012

S. Jin
Affiliation:
IMEC, Kapeldreef 75, B-3001, Leuven, Belgium
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001, Leuven, Belgium
R.A. Donaton
Affiliation:
IMEC, Kapeldreef 75, B-3001, Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001, Leuven, Belgium
A. Vantomme
Affiliation:
Instituut Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Instituut Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium
A.St. Amour
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ08544, USA
J.C. Sturm
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ08544, USA
Get access

Abstract

Transmission electron microscopy is used to investigate the structural development as a function of the annealing temperature of Co-silicides prepared on SiGe and SiGeC. The transition temperature from Co(SiGe) into Co(SiGe)2 is higher for SiGeC than for SiGe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mayer, J.W., Lau, S.S., in Electronic Materials Science: For integrated circuits in Si and GaAs. (Macmillan, New York, 1990), p. 284.Google Scholar
2 Maex, K., Mater. Sci. Eng. Rep. 11, 2 (1993).Google Scholar
3 Arienzo, M., Comfort, J.H., Crabbe, E.F., Harame, D.L., Iyer, S.S., Kesan, V.P., Meyerson, B.S., Patton, G.L., Stock, J.M.C. and Sun, Y.C., Microelectronic Engineering 19, 519 (1992).Google Scholar
4 Eberl, K., Iyer, S.S., Zollner, S., Tsang, J.C. and LeGoues, F.K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
5 Xiao, X., Sturm, J.C., Parihar, S.R., Lyon, S.A., Meyerhofer, D., Palfrey, S. and Shallcross, F.V., IEEE Electron Device Letters 14, 199 (1993).Google Scholar
6 Buxbaum, A., Eizenberg, M., Raizman, A. and Schaffler, F., Appl. Phys. Lett. 59, 665 (1991).Google Scholar
7 Liou, H.K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N. and Yang, E.S., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
8 Nur, O., Willander, M., Radamson, H.H., Sardela, M.R. Jr., Hansson, G.V., Petersson, C.S. and Maex, K., Appl. Phys. Lett. 64, 440 (1994).Google Scholar
9 Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashbun, S.P. and Öztürk, M.C., J. Mater. Res. 10, 2489 (1995).Google Scholar
10 Ridgway, M.C., Elliman, R.G., Hauser, N., Baribeau, J.-M. and Jackman, T.E., Mat. Res. Soc. Symp. Proc. 260, 857 (1992).Google Scholar
11 Donaton, R.A., Kolodinski, S., Caymax, M., Roussel, P., Bender, H., Brijs, B. and Maex, K., Appl. Surf. Sci. 91,77 (1995).Google Scholar
12 Donaton, R.A., Maex, K., Vantomme, A., Langouche, G., Morciaux, Y., St. Amour, A. and Sturm, J.C., Appl. Phys. Lett, (submitted).Google Scholar