Article contents
The Microstructural Nature of Electromigration and Mechanical Stress Voids in Integratedcircuit Interconnect
Published online by Cambridge University Press: 21 February 2011
Abstract
It is well known that stress and electromigration induced voiding is of major concern for integrated circuit interconnect reliability. However, there has been little systematiccharacterization of void morphology and crystallography in ever more technologically important narrow, “near-bamboo” conducting lines. Prior reports indicate thatvoids are typically wedge or slit shaped, with failure often associated with slit voids.Void face habit plane is most often reported to be {111}. Wedge and slit void morphology and crystallography have been studied in comb/serpentine and parallel line array test structures. In virtually all cases, void faces are {111} oriented. In contrast to earlier studies, intragranular wedge stress voids have been observed. All electromigration opens were due to slit voids; these were typically intragranular, in contradiction to current theories of void formation, and likely are mechanical fractures. Under accelerated test conditions, non-grain boundary diffusion paths appear to operate at distances of tens of micrometers. Relative displacement between wedge voids and attached grain boundaries occurs where a wedge face lies on a near common {111} plane for the two grains. It is suggested that slit voids are intragranular under both stress and electromigration conditions and likely associated with local interconnect depassivation. Based solely on appearance and crystallography, no void can uniquely be identified as due to stress alone or electromigration alone.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
- 5
- Cited by