Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T21:28:47.967Z Has data issue: false hasContentIssue false

Microstructural Investigation of RE3(Fe.V) 29 (RE = Nd, Tb) Magnetic Materials

Published online by Cambridge University Press:  21 February 2011

J. Bernardi
Affiliation:
Institut für Angewandte und Technische Physik, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria, [email protected]
M. Noner
Affiliation:
Institut für Angewandte und Technische Physik, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria
J. Fidler
Affiliation:
Institut für Angewandte und Technische Physik, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria
X.F. Han
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O.Box 603, Beijing 100080, P.R.China
F.M. Yang
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O.Box 603, Beijing 100080, P.R.China
Get access

Abstract

The microstructure of V stabilized RE3(Fe,V)29 (RE=Nd,Tb) has been investigated by transmission electron microscopy (TEM). The investigated samples were prepared by arc melting and subsequent annealing above 910°C. X-ray diffraction confirms that the samples can be indexed based on a monoclinic Nd3(Fe,Ti)29-type structure (3:29) with A2/m space group. Our TEM investigation confirms that Nd3(Fe,V)29 contains usually grains with 3:29 structure and A 2/m space group. In addition grains with rhombohedral Th2Zn17 structure are observed regularly. The Tb3(FeV)29 alloy consists also of grains with monoclinic Nd3(Fe,Ti)29-type structure and contains a high density of planer defects like crystallographic twins or antiphase boundaries. Twinning occurs preferably on (402) of the monoclinic 3:29 structure. No tetragonal RE(Fe,V)12 phase or Fe is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sagawa, M., Fujimura, S., Tokunaga, M, and Matuura, Y., J. Appl. Phys. 55, 2083, (1984).Google Scholar
2. Collocott, S.J., Day, R.K., Dunlop, J.B., and Davis, R.L., in Proceedings 7th International Symposium on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, Canberra, 1992, ed. Hi-Perm Laboratory, Reserarch Center for Advanced Minerals and Material Procession, University of Western Australia, 437, (1992).Google Scholar
3. Shcherbakova, Y.V., Ivanova, G.V., Yermolenko, A.S., and Gaviko, V.S., J.Alloys Compounds 182, 199, (1992).Google Scholar
4. Cadogan, J.M., Li, H.S., Margarian, A., Dunlop, J.B., Ryan, D.H., Collocott, S.J., and Davis, R.L, J. Appl. Phys. 76 (10), 6138, (1994).Google Scholar
5. Hu, Z. and Yelon, W.B., J. Appl. Phys. 76 (10), 6147, (1994).Google Scholar
6. Kalogirou, O., Psycharis, V., Saettas, L, and Niarchos, D., J. Magn. Magn. Mater. 146, 335, (1995).Google Scholar
7. Han, X.F.; Yang, F.M., Zhu, J.J., Pan, H.G., Wang, Y.G., Wang, J.L., Tang, N., and Zhao, R.W., J. Appl. Phys. 81 (7), 3248, (1997).Google Scholar
8. Han, X.F.; Yang, F.M., Pan, H.G., Wang, Y.G., Wang, J.L., Liu, H.L., Tang, N., Zhao, R.W., and Li, H.S, J. Appl. Phys. 81 (11), 7450, (1997).Google Scholar