Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T05:03:23.611Z Has data issue: false hasContentIssue false

Microstructral Investigations on GaN Films Grown by Laser Induced Molecular Beam Epitaxy

Published online by Cambridge University Press:  03 September 2012

H. Zhou
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr.1, 70569 Stuttgart, Germany
F. Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr.1, 70569 Stuttgart, Germany
M. Gross
Affiliation:
DLR, Institut für Technische Physik, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
H. Schröder
Affiliation:
DLR, Institut für Technische Physik, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
Get access

Abstract

Microstructural investigations on GaN films grown on SiC and sapphire substrates by laser induced molecular beam epitaxy have been performed. Threading dislocations with Burgers vectors of 1/3<1120>, 1/3<1123> and [0001] are typical line defects, predominantly the first type of dislocations. Their densities are typically 1.5×1010 cm−2 and 4×109 cm−2 on SiC and sapphire, respectively. Additionally, planar defects characterized as inversion domain boundaries lying on {1100} planes have been observed in GaN/sapphire samples with an inversion domain density of 4×109 cm−2. The inversion domains are of Ga-polarity with respect to the N-polarity of the adjacent matrix. However, GaN layers grown on SiC show Ga-polarity. Possible reasons for the different morphologies and structures of the films grown on different substrates are discussed. Based on an analysis of displacement fringes of inversion domains, an atomic model of the IDB-II with Ga-N bonds across the boundary was deduced. High resolution transmission electron microscopy (HRTEM) observations and the corresponding simulations confirmed the IDB-II structure determined by the analysis of displacement fringes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D.J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A. and Morkoc, H., Appl. Phys. Lett. 67, 1830 (1995).Google Scholar
2. Daudin, B., Rouvière, J.L. and Arlery, M., Mater. Sce. Eng. B43, 157 (1997).Google Scholar
3. Feiler, D., Williams, R.S., Talin, A.A., Yoon, H. and Goorsky, M.S., J.Crystal Growth 171, 12 (1997).Google Scholar
4. Gross, M., Henn, G. and Schröder, H., Mater. Sci. Eng. B50, 16 (1997).Google Scholar
5. Zhou, H., Phillipp, F., Gross, M. and Schröder, H., Mater. Sci. Eng. B66, (1999).Google Scholar
6. Ponce, F.A., Cherns, D., Young, W.T. and Steeds, J.W., Appl. Phys. Lett. 69, 770 (1996).Google Scholar
7. Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W. and Khan, M.A., J. Mater. Res. 11, 580 (1996).Google Scholar
8. Stadelman, P.A., Ultramicroscopy 21, 131 (1969).Google Scholar
9. Rouvière, J.L., Arlery, M., Daudin, B., Feuillet, G. and Briot, O., Mater. Sci. Eng. B50, 61 (1997).Google Scholar
10. Romano, L.T. and Myers, T.H., Appl. Phys. Lett. 71, 3468 (1997).Google Scholar
11. Holt, D.B., J. Phys. Chem. Solids 30, 1297 (1969).Google Scholar
12. Potin, V., Nouet, G. and Ruterana, P., Appl. Phys. Lett. 74, 947 (1999).Google Scholar
13. Northrup, J.E., Neugebauer, J. and Romano, L.T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
14. Cherns, D., Young, W.T., Saunders, M., Steeds, J.W., Ponce, F.A. and Nakamura, S., Phil. Mag. A77, 273 (1998).Google Scholar