Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:17:33.545Z Has data issue: false hasContentIssue false

Microscopic Theory of Surface-Enhanced Raman Scattering in Noble-Metal Nanoparticles Vitaliy

Published online by Cambridge University Press:  01 February 2011

N. Pustovit
Affiliation:
Department of Physics, Jackson State University, Jackson MS 39217
Tigran V. Shahbazyan
Affiliation:
Department of Physics, Jackson State University, Jackson MS 39217
Get access

Abstract

We study the role of a strong electron confinement on the surface-enhanced Raman scattering from molecules adsorbed on small noble-metal nanoparticles. We describe a novel enhancement mechanism which originates from the different effect that confining potential has on s-band and d-band electrons. We demonstrate that the interplay between finite-size and screening efects in the nanoparticle surface layer leads to an enhancement of the surface plasmon local field acting on a molecule located in a close proximity to the metal surface. Our calculations, based on time-dependent local density approximation, show that the additional enhancement of the Raman signal is especially strong for small nanometer-sized nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nie, S. and Emory, S. R., Science 275, 1102 (1997).Google Scholar
2. Kneipp, K. et al., Rev. Lett. 78, 1667 (1997).Google Scholar
3. Kneipp, K. et al., Chem. Rev. 99, 2957 (1999).Google Scholar
4. Kerker, M., Wang, D.-S., and Chew, H., Appl. Optics 19, 4159 (1980).Google Scholar
5. Gersten, J. and Nitzan, A., J. Chem. Phys. 73, 3023 (1980).Google Scholar
6. Schatz, G. S. and Van Duyne, R. P., in Handbook of Vibrational Spectroscopy, edited by Chalmers, J. M. and Griffiths, P. R. (Wiley, 2002) p. 1.Google Scholar
7. Xu, H. et al., Phys. Rev. Lett. 83, 4357 (1999).Google Scholar
8. Xu, H. et al., Phys. Rev. B 62, 4318 (2000).Google Scholar
9. Otto, A. et al., J. Phys. Cond. Matter 4, 1143 (1992).Google Scholar
10. Michaels, M., Nirmal, M., and Brus, L. E., J. Am. Chem. Soc. 121, 9932 (1999).Google Scholar
11. Michaels, A. M., Jiang, J., and Brus, L. E., J. Phys. Chem. B 104, 11965 (2000).Google Scholar
12. Otto, , Phys. Phys. Stat. Sol. (a) 4, 1455 (2000).Google Scholar
13. Doering, W. E. and Nie, S., J. Phys. Chem. B 106, 311 (2002).Google Scholar
14. Ekardt, W., Phys. Rev. B 31, 6360 (1985).Google Scholar
15. Liebsch, A., Phys. Rev. 48, 11317 (1993).Google Scholar
16. Kresin, V. V., Phys. Rev. 51, 1844 (1995).Google Scholar
17. Liebsch, A. and Schaich, W. L., Phys. Rev. 52, 14219 (1995).Google Scholar
18. Lermé, J. et al., Phys. Rev. Lett. 80, 5105 (1998).Google Scholar
19. Voisin, C. et al., Phys. Rev. Lett. 85, 2200 (2000).Google Scholar
20. Lopez-Bastidas, C., Maytorena, J. A., and Liebsch, A., Phys. Rev. 65, 035417 (2001).Google Scholar
21. Lushnikov, A. A., Maksimenko, V. V., and Simonov, A. J., Z. Physik B 27, 321 (1977).Google Scholar