Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:32:45.608Z Has data issue: false hasContentIssue false

Microscopic Structure and Energetics of the Pd/SrTio3 (001) Interface

Published online by Cambridge University Press:  21 March 2011

Thorsten Ochs
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuggart, Germany
Sibylle Köstlmeier
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuggart, Germany
Christian Elsässer
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuggart, Germany
Get access

Abstract

The microscopic structure and energetics of a SrTio3 (001) surface covered with thin layers of pd were investigated by means of ab-initio electronic-structure calculations. A mixed-basis pseudopotential technique based on the local density functional theory was employed. Supercells containing srTio3 sunstrates, with either SrO or Tio2 surface terminations, and pd films of varying thicknedd were used to model the (001) surfaces and the (001) heterophase interfaces. The Tio2 terminated subtrate is energetically favoured for the adhesion of Pd films, with the Pd atoms bonded on top of the O atoms. The film adhesion is strongest for one (001) layer of fcc Pd and becomes weaker with increasing film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Setter, N., and Waser, R., Acta mater. 48, 151 (2000).Google Scholar
[2] Wagner, T., Richter, G., and Rühle, M., J. Appl. Phys. 89, 2606 (2001).Google Scholar
[3] Polli, A. D., Wagner, T., Gemming, T., and Rühle, M., surf. Sci. 448, 279 (2000).Google Scholar
[4] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
[5] Vanderbilt, D., Phys. Rev. B 32, 8412 (1985); S. G. Louie, S. froyen and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).Google Scholar
[6] Louie, S. G., Ho, K.-M. and Cohen, M. L., Phys. Rev. B 19, 1774 (1979); C.-L. Fu and K.-M. Ho, Phys. Rev. B 28, 5480 (1983); C. Elsässer, N. Takeuchi, K. M. Ho, C. T. Chan, P. Braun and M. Fähnle, J. Phys.: Condens. Matter 2, 4371 (1990); C. Elsässer, doctoral thesis, Universität Stuttgart (1990); K. M. Ho, C. Elsässer, C. T. Chan and M. Fähnle, J. Phys.: Condens. Matter 4, 5189 (1992); B. Meyer, doctoral thesis, Universität Stuttgart (1998); B. Meyer, C. Elsässer, and M. Fähnle, Fortran90 Program for Mixed-Basis Pseudopotentioal Calculations for Crystals, Max-Planck-Institute für Metallforschung Stuttgart (unpublished).Google Scholar
[7] Kittel, C., Introduction to Solid State Physics, Wiley, New York (1986).Google Scholar
[8] Kimura, S., Yamauchi, J., Tsukada, M., and Watanabe, S. Phys. Rev. B 51, 11049 (1995).Google Scholar
[9] Cortona, P., and Monteleone, A. V., J. Phys.: Condens. Matter 8, 8986 (1996).Google Scholar
[10] Glassford, K. M., and Chelikowsky, J. R., Phys. Rev. B 46, 1284 (1992).Google Scholar
[11] Padilla, J., and Vanderbilt, D., Surf. Sci. 418, 64 (1998).Google Scholar
[12] Cheng, C., Kunc, K., and Lee, M. H., Phys. Rev. B 62, 10409 (2000).Google Scholar
[13] Li, Z.-Q., Zhu, J.-L., Wu, C. Q., Tang, Z., and Kawazoe, Y., Phys. Rev. B 58, 8075 (1998).Google Scholar
[14] Mackrodt, W. C., Phys. Chem. Min. 15, 228 (1998).Google Scholar
[15] Heifets, E., Dorfman, S., Fuks, D., Kotomin, E., and Gordon, A., J. Phys.: Conden. Matter 10, L347 (1998).Google Scholar
[16] Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Phys. Rev. Lett. 62, 2009 (1989).Google Scholar
[17] Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Vacuum 41, 46 (1990).Google Scholar
[18] Hikita, T., Hanada, T., and Kudo, M., Surf. Sci. 287/288, 377 (1993).Google Scholar
[19] Krainyukova, N. V., and Butshi, V. V., Surf. Sci 454–456, 628 (2000).Google Scholar
[20] Qian, G.-X., Martin, R. M., and Chadi, D. J., Phys. Rev. B 36, 7649 (1998).Google Scholar
[21] Padilla, J., and Vanderbilt, D., Phys. Rev. B 56, 1625 (1997).Google Scholar
[22] Meyer, B., Padilla, J., and Vanderbilt, D., Faraday Discussions 114, 395 (1999).Google Scholar
[23] Rao, F., Kim, M., Freeman, A. J., Tang, S., and Anthony, M., Phys. Rev. B 55, 13953 (1997).Google Scholar
[24] Finnis, M. W., J. Phys.: Condens. Matter 8, 5811 (1996).Google Scholar
[25] Musolino, V., Corso, A. Dal, and Selloni, A., Phys. Rev. Lett. 83, 2761 (1999).Google Scholar
[26] Heumann, T., and Kniepmeyer, M., Z. Anorg. Allgem. 290, 191 (1957).Google Scholar
[27] Wood, E. A., and Compton, V., Acta. Cryst. 11, 429 (1958).Google Scholar