Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T15:59:05.006Z Has data issue: false hasContentIssue false

Microcrystalline Silicon Thin-Film Transistors for Ambipolar and CMOS Inverters

Published online by Cambridge University Press:  31 January 2011

Kah-Yoong Chan
Affiliation:
[email protected]@mmu.edu.my, Multimedia University, Faculty of Engineering, Persiaran Multimedia, Cyberjaya, Selangor, 63100, Malaysia, 603-8312 5438, 603-8318 3029
Aad Gordijn
Affiliation:
[email protected], Research Center Juelich, IEF5-Photovoltaics, Juelich, Germany
Helmut Stiebig
Affiliation:
[email protected], Malibu GmbH & Co. KG, Bielefeld, Germany
Dietmar Knipp
Affiliation:
[email protected], Jacobs University Bremen, School of Engineering and Science, Bremen, Bremen, Germany
Get access

Abstract

Microcrystalline silicon (μc-Si:H) thin-film transistors (TFTs) have lately gained much attention due to their high charge carrier mobilities. We report on top-gate μc-Si:H TFTs fabricated by plasma-enhanced chemical vapor deposition at process temperatures below 180 °C with high electron and hole charge carrier mobilities exceeding 50 cm2/Vs and 12 cm2/Vs, respectively. Based on the μc-Si:H TFTs different thin-film inverters were realized including ambipolar and complimentary metal-oxide-semiconductor (CMOS) inverters. Microcrystalline CMOS inverters exhibit high voltage gains exceeding 22, whereas ambipolar inverters show reduced voltage gains of 10 at low operating voltages. The electrical characteristics of the μc-Si:H CMOS and ambipolar thin-film inverters will be discussed in terms of the voltage transfer curve, the voltage gain and the power dissipation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tsukada, T. Technology and Applications of Amorphous Silicon, Springer Series in Material Science, 37, edited by Street, R. A. (Springer-Verlag, Berlin, Germany, 2000).Google Scholar
2 Wong, W. S. Ready, S. E. Lu, J. P. and Street, R. A. IEEE Electron Device Lett. 24(9), 577579 (2003).Google Scholar
3 Kavak, H. and Shanks, H. Solid-State Electron. 49, 578584 (2005).Google Scholar
4 Brotherton, S. D. Semicond. Sci. Technol. 10, 721738 (1995).Google Scholar
5 Cheng, I. C. and Wagner, S. Appl. Phys. Lett. 80(3), 440442 (2002).Google Scholar
6 Lee, C. H. Sazonov, A. and Nathan, A. Appl. Phys. Lett. 86, 222106(2005).Google Scholar
7 Chan, K.Y. Bunte, E. Stiebig, H. and Knipp, D. Appl. Phys. Lett. 89, 203509(2006).Google Scholar
8 Chen, Y. and Wagner, S. Appl. Phys. Lett. 75(8), 11251127 (1999).Google Scholar
9 Lee, C.H. Sazonov, A. Rad, M. R. E., Chaji, G. R. and Nathan, A. Mater. Res. Soc. Symp. Proc. 910, 0910–A22 (2006).Google Scholar
10 Rech, B. Roschek, T. Repmann, T. Müller, J., Schmitz, R. and Appenzeller, W. Thin Solid Films 427, 157165 (2003).Google Scholar
11 Chan, K.Y. Knipp, D. Gordijn, A. and Stiebig, H. J. Appl. Phys. 104, 054506(2008).Google Scholar
12 Hodges, D. A. and Jackson, H. G. Analysis and Design of Digital Integrated Circuits (McGraw-Hill Book Company, New York, 1983) p. 98.Google Scholar
13 Schlesinger, T. E. Cammarata, R. C. and Prokes, S. M. Appl. Phys. Lett. 59(4), 449451 (1991).Google Scholar
14 Chan, K.Y. Bunte, E. Knipp, D. and Stiebig, H. Solid-State Electron. 52, 914918 (2008).Google Scholar