Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:41:06.673Z Has data issue: false hasContentIssue false

Microcrystalline and Nanocrystalline Silicon: Simulation of Material Properties

Published online by Cambridge University Press:  01 February 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
B. C. Pan
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
V. Selvaraj
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
Get access

Abstract

We have simulated nano-crystalline silicon and microcrystalline silicon structures with varying crystallite volume fractions, using molecular dynamics simulations. The crystallite regions reside in an amorphous matrix. We find the amorphous matrix is better ordered in nanocrystalline-Si than in the homogenous amorphous silicon networks, consistent with the observed higher stability of H-diluted films. There is a critical size above which the crystallites are stable and may grow. Sub-nm size crystallites in the protocrystalline phase are found to reduce the strain of the amorphous matrix. We simulated micro-crystalline silicon with a substantial crystallite volume fraction. Microcrystalline structures exhibit a crystalline core surrounded by an amorphous shell with similarities to silicon nanowires. We find a relatively uniform H distribution in the amorphous region and a crystal-amorphous phase boundary that is not welldefined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Meier, J., Fluckiger, R., Keppner, H., Shah, A., Appl. Phys. Lett. 65, 860 (1994).10.1063/1.112183Google Scholar
[2] Schropp, R.E.I., Xu, Y., Iwanicko, E., Zacharia, G., and Mahan, A. H., MRS Symp. Proc. 715 623 (2002).10.1557/PROC-715-A26.3Google Scholar
[3] Koh, J., Lee, Y., Fujiwara, H., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998). A. S. Ferlauto, R. J. Koval, C. R. Wronski and R. W. Collins, Appl. Phys. Lett. 80, 2666 (2002).10.1063/1.122194Google Scholar
[4] Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J. and Collins, R. W., Proceedings MRS 715, 459 (2002).10.1557/PROC-715-A13.4Google Scholar
[5] Tsu, D.V., Chao, B.S., and Ovshinsky, S.R., Guha, S. and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).10.1063/1.119928Google Scholar
[6] Kamei, T., Stradins, P. and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).10.1063/1.123662Google Scholar
[7] Lubianiker, Y. and Cohen, J. D., Jin, H C., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).10.1103/PhysRevB.60.4434Google Scholar
[8] Han, D., Baugh, J. and Yue, G., Phys. Rev. B 62, 7169 (2000).10.1103/PhysRevB.62.7169Google Scholar
[9] Perrey, C., Thompson, S. S., Letzen, M., Kortshagen, U., and Carter, C. B. MRS 808, A8.7.1 (2004).10.1557/PROC-808-A8.7Google Scholar
[10] Voyles, P. M., Gerbi, J. E., Treacy, M.M.J., Gibson, J. M., and Abelson, J. R., Phys. Rev. Lett. 86, 5514 (2001).10.1103/PhysRevLett.86.5514Google Scholar
[11] Silva, C. R. S. da and Fazzio, A., Phys. Rev. B 64, 075301 (2001).10.1103/PhysRevB.64.075301Google Scholar
[12] Khare, S. V., Nakhamson, S. M., Voyles, P., Keblinski, P., and Abelson, J. R., Appl. Phys. Lett. 85, 745 (2004).10.1063/1.1776614Google Scholar
[13] Pan, B.C. and Biswas, R., J. Appl. Phys. 96, 6247 (2004).10.1063/1.1807524Google Scholar
[14] Biswas, R., Pan, B.C. and Ye, Y. Y., Phys. Rev. Lett. 88, 205502 (2002).10.1103/PhysRevLett.88.205502Google Scholar
[15] Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).10.1063/1.120740Google Scholar
[16] Hansen, U. and Vogl, P., Phys. Rev. B 57, 13295 (1998).10.1103/PhysRevB.57.13295Google Scholar
[17] Pan, B.C. and Biswas, R., Journal of Non-Crystalline Solids 333, 44 (2004).10.1016/j.jnoncrysol.2003.09.058Google Scholar
[18] Mahan, A.H., et al, Phil. Mag. Lett. 80, 647 (2000).10.1080/09500830050134372Google Scholar
[19] Sriraman, S., Agarwal, S., Aydil, E. S., and Maroudas, D., Nature 418, 62 (2002).10.1038/nature00866Google Scholar