Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T11:03:41.809Z Has data issue: false hasContentIssue false

Methodology for Combined Neutron Diffraction and Bragg Edge Imaging

Published online by Cambridge University Press:  02 May 2013

R. Woracek
Affiliation:
University of Tennessee, Knoxville, TN 37996, USA Helmholtz Zentrum Berlin, 14109 Berlin, Germany
J.R. Bunn
Affiliation:
University of Tennessee, Knoxville, TN 37996, USA
D. Penumadu
Affiliation:
University of Tennessee, Knoxville, TN 37996, USA
A. Tremsin
Affiliation:
University of California, Berkeley, CA, 94720, USA
A. Siriruk
Affiliation:
University of Tennessee, Knoxville, TN 37996, USA
N. Kardjilov
Affiliation:
Helmholtz Zentrum Berlin, 14109 Berlin, Germany
I. Manke
Affiliation:
Helmholtz Zentrum Berlin, 14109 Berlin, Germany
M. Boin
Affiliation:
Helmholtz Zentrum Berlin, 14109 Berlin, Germany
A. Hilger
Affiliation:
Helmholtz Zentrum Berlin, 14109 Berlin, Germany
C.R. Hubbard
Affiliation:
formerly:Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; currently: Applied Diffraction, Oak Ridge, TN 37830, USA
B. Clausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
T.A. Sisneros
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Simultaneous use of neutron diffraction and attenuation based transmission Bragg edge imaging for strain measurements is demonstrated in this paper using the pulse neutron source at Los Alamos National Laboratory. Cylindrical samples made from ferritic steel have been subjected to in-situ elastic loading in tension and torsion. Lattice strains were investigated for both deformation modes by time-of-flight (TOF) neutron diffraction using two detector banks at 2θ of ±90°. At the same time, the transmitted portion of the neutron beam was recorded with the goal to analyze the position and shape of the Bragg edges, using a novel time/energy resolved Microchannel Plate (MCP) detector with pixel size of 55 µm and a 28x28 mm2 field of view. Lattice strains obtained using neutron diffraction indicate that the deformation path (tension versus torsion) has important effect on their evolution and related results are summarized.

The emphasis of this paper is to explain the aspects of the experimental setup and data interpretation associated with neutron Bragg edge transmission technique for obtaining through-thickness averaged strain measurements. Implications of using transmission imaging based strain mapping for samples subjected to deformation under tensile loading (where stress at a given cross-section is constant) versus torsional loading (where stress varies linearly from center to outer radius) are discussed. In the case of samples subjected to tensile loading, analysis of the Bragg edge shifts provides the strain value in the direction of the transmitted beam. Thus, three strain components are measured simultaneously when performing Bragg edge imaging in addition to diffraction using two detector banks. For specimens subjected to pure shear by torsion, the Bragg edge transmission technique cannot readily provide quantitative strain information as the mid-point of the Bragg edge does not shift uniformly due to external loading, but results in a broadening of the Bragg edge. Such information can be used to describe the variation of strain distribution along the transmitted beam direction. Spatially resolved Bragg edge maps will be very helpful to detect d-spacing inhomogeneities within the illuminated volume, which may remain undetected when using diffraction only measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Strobl, M., Wimpory, R. C., Manke, I., and Banhart, J., Journal of Applied Physics, vol. 109, p. 093506, 2011.CrossRefGoogle Scholar
Strobl, M., Woracek, R., Kardjilov, N., Hilger, A., Wimpory, R., Tremsin, A., Wilpert, T., Schulz, C., Manke, I., and Penumadu, D., Nuclear Instruments and Methods in Physics Research Section A, vol. 680, pp. 2734, 2012.CrossRefGoogle Scholar
Woracek, R., Bunn, J. R., Penumadu, D., and Hubbard, C. R., Applied Physics Letters, vol. 100, pp. 191904191904-5, 2012.CrossRefGoogle Scholar
Vogel, S., PhD Dissertation, Mathematisch-Naturwissenschaftliche Fakultät, Uni Kiel, Kiel, 2000.Google Scholar
Steuwer, A., Withers, P. J., Santisteban, J. R., Edwards, L., Bruno, G., Fitzpatrick, M. E., Daymond, M. R., Johnson, M. W., and Wang, D., physica status solidi (a), vol. 185, pp. 221230, 2001.3.0.CO;2-C>CrossRefGoogle Scholar
Kardjilov, N., Manke, I., Hilger, A., Williams, S., Strobl, M., Woracek, R., Boin, M., Lehmann, E., Penumadu, D., and Banhart, J., International Journal of Materials Research, pp.p. 151154 2012.CrossRefGoogle Scholar
Clausen, B., Lorentzen, T., Bourke, M. A. M., and Daymond, M. R., Materials Science and Engineering: A, vol. 259, pp. 1724, 1999.CrossRefGoogle Scholar
Hutchings, M. T., Withers, P. J., Holden, T.M., and Lorentzen, T., Introduction to the Characterization of Residual Stress by Neutron Diffraction. Boca Raton, FL: CRC Press, 2005.CrossRefGoogle Scholar
Yu, M., Applied Mechanics Reviews, vol. 55, pp. 169218, 2002.CrossRefGoogle Scholar
Martins, R. V., Lienert, U., Margulies, L., and Pyzalla, A., Materials Science and Engineering: A, vol. 402, pp. 278287, 2005.CrossRefGoogle Scholar
Bunn, J., Penumadu, D., and Hubbard, C., Applied Physics A, vol. 99, pp. 571578, 2010.CrossRefGoogle Scholar
Cakmak, E., Choo, H., An, K., and Ren, Y., Acta Materialia, vol. 60, pp. 67036713, 2012.CrossRefGoogle Scholar
Winholtz, R. and Cohen, J., Australian Journal of Physics, vol. 41, pp. 189200, 1988.CrossRefGoogle Scholar
Steuwer, A., Withers, P. J., Santisteban, J. R., and Edwards, L., Journal of Applied Physics, vol. 97, p. 074903, 2005.CrossRefGoogle Scholar
Santisteban, J. R., Edwards, L., Fizpatrick, M. E., Steuwer, A., and Withers, P. J., Applied Physics A: Materials Science & Processing, vol. 74, pp. s1433s1436, 2002.CrossRefGoogle Scholar
Santisteban, J. R., Vicente-Alvarez, M. A., Vizcaino, P., Banchik, A. D., Vogel, S. C., Tremsin, A. S., Vallerga, J. V., McPhate, J. B., Lehmann, E., and Kockelmann, W., Journal of Nuclear Materials, 2011.Google Scholar
Santisteban, J. R., Edwards, L., Fitzpatrick, M. E., Steuwer, A., Withers, P. J., Daymond, M. R., Johnson, M. W., Rhodes, N., and Schooneveld, E. M., Nuclear Instruments and Methods in Physics Research Section A, vol. 481, pp. 765768, 2002.CrossRefGoogle Scholar
Bourke, M. A. M., Dunand, D. C., and Ustundag, E., Applied Physics A, vol. 74, pp. s1707s1709, 2002/12/01 2002.CrossRefGoogle Scholar
Tremsin, A. S., McPhate, J. B., Kockelmann, W. A., Vallerga, J. V., Siegmund, O. H. W., and Bruce Feller, W., in Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE, 2008, pp. 29022908.CrossRefGoogle Scholar
Boin, M., Wimpory, R. C., Hilger, A., Kardjilov, N., Zhang, S. Y., and Strobl, M., Journal of Physics: Conference Series, vol. 340, p. 012022, 2012.Google Scholar