Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:52:38.753Z Has data issue: false hasContentIssue false

A Method of Incorporating the Composition into the Calculation of the Si Kβ X-ray Emission Spectrum of the SiO2 — CaO Binary Glass with the DV-X α Molecular Orbital Calculation

Published online by Cambridge University Press:  15 February 2011

M. Morishita
Affiliation:
Dept. Mater. Sci. & Eng, Himeji Inst. Tech., 2167 Shosha, Himeji 671-2201, Japan
K. Koyama
Affiliation:
Dept. Mater. Sci. & Eng, Himeji Inst. Tech., 2167 Shosha, Himeji 671-2201, Japan
T. Kikko
Affiliation:
Former Graduate Student of Himeji Inst. Tech.
Get access

Abstract

Si KB X-ray emission spectra of SiO2—CaO binary glasses simulated with the DV-X α molecular orbital calculation were compared with ones measured by EPMA. The composition of the glass has been incorporated in the calculation of the Si 3p partial density of states (PDOS). The Si 3p PDOS, as a function of the CaO content, agreed well with the measured Si Kβ X-ray emission spectra of the 62.4mol%SiO2 – 37.6mol%CaO and 43.3mol%SiO2 – 56.7mol%CaO binary glasses. The present method was found to provide a very useful means of clarifying the change in the ionic configuration of the glass with the metal oxide content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waseda, Y., The structure of Non-crystalline Materials, (McGraw-Hill, New York, 1980), p.138.Google Scholar
2. Matsumiya, T., Nogami, A. and Fukuda, Y., ISIJ. International, 33, 210 (1933).Google Scholar
3. Masson, C. R., Proc. Roy. Soc., A287, 201 (1965).Google Scholar
4. Gaskell, D. R., Met Trans., 8B, 131 (1977).Google Scholar
5. Gaskell, D. R., Proc. of 5th Intern. Conf. on Molten Slags, Fluxes and Salts '97, Iron & Steel Soc. AIME., 11 (1997).Google Scholar
6. Kikuchi, N., Maekawa, T. and Yokokawa, T., Bull. Chem. Soc. Jpn., 52, 1260 (1979).Google Scholar
7. Adachi, H. and Taniguchi, K., J. Phys. Soc. Jpn., 49, 1944 (1980).Google Scholar
8. Kawai, J., Nucl. Instruments and Methods PhysRes., B75, 3 (1993).Google Scholar
9. Tanaka, I., Kawai, J. and Adachi, H., Phys. Rev., B52, 11733 (1995).Google Scholar
10. Slater, J. C., The Calculation of Molecular Orbitals, translated by Sugano, S., Adachi, H. and Tsukada, M. (Tokyo Univ. Shuppan-kai, Tokyo, 1982), p.58.Google Scholar
11. Morishita, M., Koyama, K., Kikko, T., Morinaga, M. and Adachi, H., Molten Salts, 40, 222 (1997).Google Scholar
12. Morishita, M., Koyama, K., Kikko, T., Morinaga, M. and Adachi, H., Advances in Quantum Chemistry, Academic press, in press.Google Scholar
13. Adachi, H. : Tsukada, M. and Satoko, C., J. Phys. Soc. Jpn., 45, 875 (1978).Google Scholar
14. Yokokawa, T., Tetsu to Hagane, 68, 26 (1982).Google Scholar
15. Nakajima, K., Tetsu to Hagane, 80, 19 (1994).Google Scholar
16. Suginohara, Y., Yanagase, T. and Ito, T., Molten Salt, 12, 151 (1969).Google Scholar
17. Galeener, F. L. and Geissberger, A. E., Phys. Rev., B27, 6199 (1983).Google Scholar
18. Levin, E. M. and Block, S., J. American Ceramic Soc., 40, 95 (1957).Google Scholar