Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:04:11.629Z Has data issue: false hasContentIssue false

A Metastable-atom Deexcitation Spectroscopy (MDS) study on the First Atomic Layer of a Polycrystalline Titanium Surface

Published online by Cambridge University Press:  10 February 2011

M. Kurahashi
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen Tsukuba Ibaraki 305, Japan
Y. Yamauchi
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen Tsukuba Ibaraki 305, Japan
Get access

Abstract

The oxygen adsorption on a polycrystalline titanium surface at room temperature has been studied by MDS in conjunction with UPS and AES. MDS and UPS spectra were measured using a pulsed-dischaxge-type metastable helium atom source which we have newly developed. FRom the analysis of the measured spectra, we found the following about the local density of states (LDOS) of the oxygen-adsorbed titanium surface: (1) With increasing oxygen exposure at 0-2 L, the LDOS on the first atomic layer (SDOS) at 0-1 eV below the Fermi level (EF) decreases more steeply than that of deeper layers. (2) The SDOS at 5–8 eV below EF remains small at 0-2 L, and begins to increase at ca. 2 L while the LDOS of subsurface layer increases first. We discuss the positions of adsorbed oxygen atoms based on these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sesselmann, W., Woratshek, B., Küppers, J., Ertl, G. and Haberland, H., Phys. Rev. B 35, 1547 (1987); 35, 8348 (1987).Google Scholar
2. Conrad, H., Ertl, G., Küppers, J., Sesselmann, W. and Haberland, H., Surf. Sci. 121, 161 (1982).Google Scholar
3. Bozso, F., Yates, J. T., Arias, J., Metiu, H. and Martin, R. M., J. Chein. Phys. 78, 4256 (1983).Google Scholar
4. Hanson, D. M., Stockbauer, R. and Madey, T. E., Phys. Rev. B 24, 5513 (1981).Google Scholar
5. Fukuda, Y., Elam, W. T. and Park, R. L., Appl. Surf. Sci. 1, 278 (1978).Google Scholar
6. Bringniau, D., Argile, C., Barthes-Labriusse, M. G. and Rhead, G. E., Surf. Sci. 141, 639 (1984).Google Scholar
7. Brearly, W. and Surplice, N. A., Surf. Sci. 64, 372 (1977).Google Scholar
8. Azoulay, A., Shamir, N., Fromm, E. and Mints, M. H., Surf. Sci. 370, 1 (1997).Google Scholar
9. Bertel, E., Stockbauer, R. and Madey, T. E., Surf. Sci. 141, 355 (1984).Google Scholar
10. Aduru, S. and Rabalais, J. W., Langmuir 3, 543 (1987).Google Scholar
11. Biwer, B. M. and Bernasek, S. L., Surf. Sci. 167, 207 (1986).Google Scholar
12. Jonker, B. T., Morar, J. F. and Park, R. L., Phys. Rev. B 15, 2951 (1981).Google Scholar
13. Strong, R. L. and Erskine, J. L., J. Vac. Sci. Technol. A 3, 1428 (1985).Google Scholar
14. Garrett, S. J., Egdell, R. G. and Riviere, J. C., J. Electron Spectrosc. Relat. Phenom. 54/55, 1065 (1990).Google Scholar
15. Berndt, R., Gimzewski, J. K. and Schlittler, R. R., Surf. Sci. 310, 85 (1994).Google Scholar
16. Yamauchi, Y., Kurahashi, M. and Kishimoto, N., Mes. Sci. Technol. (to be published)Google Scholar
17. Smith, K. E. and Henrich, V. E., Phys. Rev. B 38, 9571 (1988).Google Scholar
18. Zhang, Z., Jeng, S. and Henrich, V. E., Phys. Rev. B 43, 12005 (1991).Google Scholar
19. Woodruff, D. P. and Deichar, T. A., Modern Techniques of Surface Science, 2nd ed. (Cambridge University Press, Cambridge, 1994), pp. 271278.Google Scholar
20. Hagstrum, H. D., Phys. Rev. 150, 149 (1966).Google Scholar