Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:27:22.164Z Has data issue: false hasContentIssue false

Metastable Phase Equilibria in Co-Deposited Ni1−xZrx Thin Films

Published online by Cambridge University Press:  26 July 2012

J. B. Rubin
Affiliation:
Center for Materials Science and MST-7, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
R. B. Schwarz
Affiliation:
Center for Materials Science and MST-7, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
Get access

Abstract

We determine the glass forming range (GFR) of co-deposited Ni1−xZrx (0 < x < 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 < x < 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 1012 K s−1, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower ‘effective’ cooling rate during the condensation of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lin, C.-J. and Spaepen, F., Acta Metall. 34, 1367 (1986).Google Scholar
2. Uhlman, D. R., J. non-cryst. Solids 7, 337 (1972).Google Scholar
3. Tanner, L.E. and Ray, R., Acta metall. 27, 1727 (1979).Google Scholar
4. Morris, D. G., Acta metall. 31, 1479 (1983).Google Scholar
5. Nash, P. and Schwarz, R.B., Acta Metall. 36, 3047 (1988).Google Scholar
6. Hollomon, J. H. and Turnbull, D., in Prog. Metall Phys., Vol.4 (Interscience, New York, 1953), p. 333.Google Scholar
7. Saunders, N., CALPHAD 9, 297 (1986).Google Scholar
8. Boer, F. R. de, Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals - Transition Metal Alloys, (North Holland, Amsterdam, 1988).Google Scholar
9. Dong, Y. D., Gregan, G., and Scott, M. G.,.J Non-Cryst. Solids.43, 403 (1981).Google Scholar
10. Buschow, K. H. J., Verbeek, B. H., and Dirks, A. G., J. Phys. D: Appl Phys. 14, 1087 (1981).Google Scholar
11. Jansson, K. and Nygren, M., Mat. Sci. Eng. 97, 373 (1988).Google Scholar
12. Altounian, Z., Guo-hua, T., and Strom-Olsen, J. O., J. Appl. Phys. 54,3111 (1983).Google Scholar
13. Buschow, K. H. J., J. Phys. F: Met. Phys. 14, 593 (1984).Google Scholar
14. Schwarz, R. B. and Rubin, J. B., paper in this symposium.Google Scholar
15. Predel, B., in Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, eds. Chang, Y. A. and Smith, J. (TMS-AIME, Metals Park, Ohio, 1980), p. 72.Google Scholar
16. Turnbull, D., J. Appl Phys. 21, 1022 (1950).Google Scholar
17. Kirkpatrick, M. E. and Larsen, W. L., Trans. ASM 54, 580 (1961).Google Scholar
18. Schwarz, R. B., Nash, P., and Turnbull, D., J. Mater. Res. 2, 456 (1987).Google Scholar