Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T23:26:04.419Z Has data issue: false hasContentIssue false

Metastable Changes in the Photoconductive Properties of Microcrystalline Silicon Upon Heat Treatment

Published online by Cambridge University Press:  01 February 2011

R. Brüggemann*
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany, Email:[email protected]
Get access

Abstract

We demonstrate that metastable changes or instabilities in the dark conductivity of microcrystalline silicon upon heat treatment and ambient conditions, which have been reported in the literature, are accompanied by changes in the photoconductivity or the majority-carrier mobility-lifetime product. The minority-carrier mobility-lifetime product and sub-gap absorption appear to be much less affected by different heat treatment procedures and ambient conditions. The observations can be related to Fermi-level induced change in defect occupancy by which the effective density of recombination centres is reduced for electrons but remains the same for holes. Minority carrier properties seem to be better suited as an indicator for sample quality and for comparison of microcrystalline silicon samples from different laboratories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tanielian, M., Philos. Mag. B 45, 435 (1982).10.1080/01418638208227449Google Scholar
2 Veprek, S. et al., J. Phys. C. Solid State Phys. 16, 6241 (1983).10.1088/0022-3719/16/32/015Google Scholar
3 Brüggemann, R., Hierzenberger, A., Wanka, H.N., Schubert, M.B., Mat. Res. Soc. Symp. Proc. 507, 1250 (1998).10.1557/PROC-507-921Google Scholar
4 Finger, F., Carius, R., Dylla, T., Klein, S., Günes, M., IEE Proc. Circ. Dev. Syst. 150, 300 (2003).10.1049/ip-cds:20030636Google Scholar
5 Smirnov, V., Reynolds, S., Main, C., Finger, F., Carius, R., J. Non-Cryst. Solids 338, 421 (2004).10.1016/j.jnoncrysol.2004.03.010Google Scholar
6 Smirnov, V., Reynolds, S., Finger, F., Main, C., Carius, R., Mat. Res. Soc. Symp. 808, A9.11 (2004).10.1557/PROC-808-A9.11Google Scholar
7 Brüggemann, R., Kleider, J.P., Longeaud, C., Mat. Res. Soc. Symp. Proc. 507, A9.8 (2004).10.1557/PROC-808-A9.8Google Scholar
8 Brüggemann, R., Kleider, J.P., Longeaud, C., Proc. 16th European Photovoltaic Solar Energy Conference, ed. Scheer, H. et al., James & James Scient. Publ. London, 2000, p. 645.Google Scholar
9 Brüggemann, R., J. Mater. Sci. – Materials in Electronics 14, 629 (2003).10.1023/A:1026189912090Google Scholar
10 Ritter, D., Weiser, K., Opt. Comm. 57, 336 (1986).10.1016/0030-4018(86)90270-1Google Scholar
11 Günes, M., Göktas, O., Okur, S., Isik, N., Carius, R., Klomfass, J., Finger, F., J. Optoelectron. Adv. Mat. 7, 161 (2005).Google Scholar
12 Brüggemann, R., J. Optoelectron. Adv. Mat. 7, 495 (2005).Google Scholar
13 Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., Wagner, H., Philos. Mag. A 77, 1447 (1998).10.1080/01418619808214262Google Scholar
14 Brüggemann, R., Kleider, J. P., Longeaud, C., Mencaraglia, D., Guillet, J., Bourée, J.E, Niikura, C., J. Non-Cryst. Solids 266-269, 258 (2002).Google Scholar
15 Kanschat, P., Lips, K., Brüggemann, R., Hierzenberger, A., Sieber, I., Fuhs, W., Mat. Res. Soc. Symp. Proc. 762, A2.5 (1998).Google Scholar
16 Souffi, N., Bauer, G.H., Brüggemann, R., Thin Solid Films, in press, (2005).Google Scholar
17 Reynolds, S., Smirnov, V., Finger, F., Main, C., Carius, R., J. Optoelectron. Adv. Mat. 7, 91 (2005).Google Scholar