Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:42:12.144Z Has data issue: false hasContentIssue false

Metal-Oxide Interfacial Evolution in Thermally Grown Oxide Films

Published online by Cambridge University Press:  11 February 2011

D. E. Mencer
Affiliation:
Department. of Chemistry, Wilkes University, Wilkes-Barre, PA 18776, USA.
M. A. Hossain
Affiliation:
Gill Chair of Chem. and Chem. Eng., Lamar University, Beaumont, TX 77710, USA.
M. Kesmez
Affiliation:
Gill Chair of Chem. and Chem. Eng., Lamar University, Beaumont, TX 77710, USA.
D. G. Naugle
Affiliation:
Department of Physics, Texas A&M University, College Station TX 77853.
D. L. Cocke
Affiliation:
Gill Chair of Chem. and Chem. Eng., Lamar University, Beaumont, TX 77710, USA.
Get access

Abstract

The metal-oxide interface is a crucial zone in the fundamental understanding of oxide growth and growth instabilities. However, obtaining fundamental information on this buried interface has proven extremely difficult using modern surface and interfacial characterization methods. Using copper oxide growth over copper metal, examined between RT and 250°C, as a model system, we have delineated the fundamental physical chemical processes that determine the oxide growth and instabilities at the metal-oxide interface. Application of controlled thermal growth studies in combination with linear sweep voltammetry (LSV) has allowed experimental access to the metal-oxide interface with surprising characterization capabilities. The methodologies involved and the physical chemical phenomena will be discussed in context of the application of modern surface characterization methods including pulsed field desorption mass spectrometry, XPS combined with depth profiling and angular resolved methods. The evolution and alteration of the precursor oxide that develops at low temperatures <75°C will be explained on the basis of previously observed metal oxide interfacial phenomena involving coupled bulk and surface reactions. The nature of the interfacial zone will be discussed with electron transfer and oxygen absorption models that are applicable to oxide growth and instabilities in general.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Netzer, F. P., Surface Review and Letters 9, 1553 (2002).Google Scholar
[2] Cocke, D. Electrochemical, Thermal, and Plasma Preparation of Oxide Coatings, Theory and Practice, in Proceedings of XXII Congresso Internaciaonal de Metalurgia y Materiales, November 8–10, 2000, Instituto Technologico de Saltillo, Saltillo, Coahuila, Mexico.Google Scholar
[3] Apen, E., Rogers, B. R. and Sellers, J. A., J. Vac. Sci Technol. 16, 1227 (1998).Google Scholar
[4] Chan, H. Y. H., Takoudis, C. G., Weaver, M. J., Electrochem. and Solid State Lett. 2, 189 (1999).Google Scholar
[5] Li, J., Mayer, J. W., Colgan, E. G., J. Appl. Phys. 70, 2820 (1991).Google Scholar
[6] Rauh, M. and Wissmann, P., Thin Solid Films 228, 121 (1993).Google Scholar
[7] Hono, K., Pickering, H., Hashizume, T., Kamiya, I., Sakurai, T., Sur. Sci. 213, 90 (1989).Google Scholar
[8] Garcia-Cantu, R., Alvarado, J. J., Solorza, O., J. Microsc. 171, 167 (1993).Google Scholar
[9] Cocke, D. L., Chuah, G. K., Kruse, N., Block, J. H., Appl. Sur. Sci. 84, 153161 (1995).Google Scholar
[10] Machefert, J. M., Lenglet, M., Blavette, D., Menard, A., D'Huysser, A., “Structure and Reactivity of Surfaces” (Elsevier Publishing, Amsterdam, 1989), p. 625.Google Scholar
[11] Barr, T., J. Phys. Chem. 82, 1801 (1978).Google Scholar
[12] Yoon, C. and Cocke, D. L., Appl. Surf. Sci. 31, 118 (1988); J. Electrochem. Soc. 134, 643 (1987).Google Scholar
[13] Streblow, H. and Titze, B., Electrochim. Acta 25, 839 (1980).Google Scholar
[14] Raikar, G. N., Gregory, J. C. and Peters, P. N., Oxid. Metals 42, 1 (1994).Google Scholar
[15] Lenglet, M., Kartouni, K., Machefert, J., Claude, J. M., Steinmetz, P., Beauprez, E., Heinrich, J., Celati, N., Mat. Res. Bull. 30, 393 (1995).Google Scholar
[16] Lefez, B., Kartouni, K., Lenglet, M., Ronnow, D., Ribbing, C. G., Surf. & Interface Anal. 22, 451 (1994).Google Scholar
[17] Lenglet, M., Kartouni, K., Delehaye, D., J. Appl. Electrochem. 21, 697 (1991).Google Scholar
[18] Weider, H. and Czanderna, A. W., J. Phys. Chem. 28, 816 1962.Google Scholar
[19] Clarke, E. G. and Czanderna, A. W., Surf. Sci. 49, 529 (1975).Google Scholar
[20] Hapse, M. G., Gharpurey, M. K., Biswas, A. B., Sur. Sci. 9, 87 (1968).Google Scholar
[21] Neumeister, H. and Jaenicke, W., Z. Phys Chem. Neue Folge B108, 217 (1977).Google Scholar
[22] Czanderna, A. W. and Wieder, H. in “Vacuum Microbalance Techniques”, edited by Walker, R. F. (Plenum Press, Inc., New York, 1962), Vol. 2, pp. 147164.Google Scholar
[23] Suzuki, S., Ishikawa, Y., Isshiki, M., Wsaeda, Y., Materials Transactions JIM, 38, 1004 (1997).Google Scholar
[24] Bubert, H. and Appel, T., J. Microscoy Society of America 2, 35 (1996).Google Scholar
[25] O'Reilly, M., Jaing, X., Beechinor, J. T., Lynch, S., NíDheasuna, C., Patterson, J. C., Crean, G. M., Appl. Surf. Sci. 91, 152 (1995).Google Scholar
[26] Roy, S. K., Bose, S. K., Sircar, S. C., Oxidation of Metals 35, 1 (1991).Google Scholar
[27] Lee, S.-Y., Choi, S.-H., Park, C.-O., Thin Solid Films 359, 261 (2000).Google Scholar
[28] Yang, J. C., Kolasa, B., Gibson, J. M., Appl. Phys. Let. 73, 2841 (1998).Google Scholar
[29] Rauh, M., Finzel, H.-U., Wissmann, P., Z. Naturforsch. 54A, 117 (1999).Google Scholar
[30] Forsén, O., Personen, P., Aromaa, J., Sourtti, T., Trans. IMF 75, 65 (1997).Google Scholar
[31] Schennach, R, Mollah, MYA, Parga, JR, Cocke, DL, Linear sweep voltammetric and galvanostatic reduction for interfacial characterization of materials, in Proceedings of XXII Congresso Internaciaonal de Metalurgia y Materiales, November 8–10, 2000, Instituto Technologico de Saltillo, Saltillo, Coahuila, Mexico.Google Scholar
[32] Cocke, D. L.; Block, J. H., Surf. Sci., 70, 363 (1977).Google Scholar
[33] Yoon, C., A surface segregation and oxidation study of alloys with unique electronic properties-implications in catalysis and corrosion, Ph.D. Dissertation, Texas A&M University, 1986.Google Scholar
[34] Bellakhal, N., Draou, K., Brisset, J. L., J. Appl. Electrochem., 27, 414 (1997).Google Scholar
[35] Mencer, D. E., Hossain, M. A., Parga, J. R., Cocke, D. L., J. Mater. Sci. Lett. 21, 125 (2002); Erratum, submitted.Google Scholar
[36] Mencer, D. E., Hossain, M. A., Schennach, R., Kesmez, M., Parga, J. R. and Naugle, D. G., J. Appl. Electrochem., submitted.Google Scholar