Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:07:32.914Z Has data issue: false hasContentIssue false

Metalorganic Molecular Beam Epitaxy of GaAsP for Visible Light-Emitting Devices on Si

Published online by Cambridge University Press:  10 February 2011

M. Yoshimoto
Affiliation:
Dept. Electronics and Information Sci., Kyoto Institute of Technology, Sakyo, Kyoto 606-8585, Japan, [email protected]
J. Saraie
Affiliation:
Dept. Electronics and Information Sci., Kyoto Institute of Technology, Sakyo, Kyoto 606-8585, Japan, [email protected]
T. Yasui
Affiliation:
Dept. Electronic Sci. and Eng., Kyoto University, Sakyo, Kyoto 606-8501, Japan
S. HA
Affiliation:
Dept. Electronic Sci. and Eng., Kyoto University, Sakyo, Kyoto 606-8501, Japan
H. Matsunami
Affiliation:
Dept. Electronic Sci. and Eng., Kyoto University, Sakyo, Kyoto 606-8501, Japan
Get access

Abstract

GaAs1–xPx (0.2 <; x < 0.7) was grown by metalorganic molecular beam epitaxy with a GaP buffer layer on Si for visible light-emitting devices. Insertion of the GaP buffer layer resulted in bright photoluminescence of the GaAsP epilayer. Pre-treatment of the Si substrate to avoid SiC formation was also critical to obtain good crystallinity of GaAsP. Dislocation formation, microstructure and photoluminescence in GaAsP grown layer are described. A GaAsP pn junction fabricated on GaP emitted visible light (˜1.86 eV). An initial GaAsP pn diode fabricated on Si emitted infrared light.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamada, T., Tachikawa, M., Sasaki, T., Mori, H., Katoda, Y., and Yamamoto, M., Electron. Lett., 31, 455 (1995).Google Scholar
2. Hashimoto, A., Kawarada, Y., Kamijoh, T., Akiyama, M., Watanabe, M., and Sakuta, M., Appl. Phys. Lett., 48, 1617 (1986).Google Scholar
3. Kondo, S., Matsumoto, S., and Nagai, H., Appl. Phys. Lett., 53, 279 (1988).Google Scholar
4. Doi, T., Namba, T., Uehara, A., Nagata, N., Miyazaki, S., Shibahara, K., Yokoyama, S., Iwata, A., Ae, A., and Hirose, M., Jpn. J. Appl. Phys. 35, 1405 (1996).Google Scholar
5. Hara, K., Kojima, K., Mitsunaga, K., and Kyuma, K., IEEE J. Quantum Electron., 28, 1335 (1992).Google Scholar
6. Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett., 66, 1249 (1995).Google Scholar
7. Yoshimoto, M., Watanabe, Y., and Matsunami, H., Jpn J. Appl. Phys., 37, 1709 (1998).Google Scholar
8. Palmer, J. E., Burns, G., and Fonstad, C. G., Appl. Phys. Lett., 55, 990 (1989).Google Scholar
9. Sheldon, P., Jones, K. M., Al-Jassim, M. M., and Jacobi, B. G., J. Appl. Phys., 63, 5609 (1988).Google Scholar
10. Tachikawa, M. and Yamaguchi, M., Appl. Phys. Lett., 56,.484 (1990).Google Scholar
11. Speck, J. S., Brewer, M. A., Beltz, G., Romanov, A. E., and Pompe, W., J. Appl. Phys., 80, 3808 (1996).Google Scholar
12. Craford, M. G., Progress in Solid State Chemistry, Vol.8, (Pergamon, New York, 1973), p.127.Google Scholar