Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:16:09.673Z Has data issue: false hasContentIssue false

Metallization for Very-Large-Scale Integrated Circuits

Published online by Cambridge University Press:  15 February 2011

P. B. Ghate*
Affiliation:
Semiconductor Research and Development Laboratories, Texas Instruments Inc., Dallas, TX 75265 (U.S.A.)
Get access

Abstract

Progress in patterning technologies and computer-aided circuit designs have brought us to the threshold of very-large-scale integrated (VLSI) circuits with 100 000 or more devices to be integrated on a silicon chip. In this paper we review thin film applications in the fabrication of contacts and interconnects for VLSI circuits. Device structures suitable for both bipolar and metal/oxide/semiconductor (MOS) VLSI circuit applications tend to have shallow junction depths and contact areas (silicon-metal interfaces) in the 0.2–0.5 μm and 1–2μm2 ranges respectively; also some of the circuits require Schottky barrier diodes. Consumption of silicon in the contact windows needs to be minimized with the use of silicide layers for siliconmetal contacts. The formation and use of platinum silicide layers for bipolar applications are reviewed. Our observations indicate that the carbon and oxygen present in Czochralski-grown silicon crystals interfere in platinum silicide formationand affect the electrical characteristics of the contacts. The use of barrier layers in VLSI metallization is illustrated. The interdependence of film microstructure, electromigration-induced failures and VLSI interconnection reliability is examined. The integration of a large number of components on a VLSI chip with a single level of interconnections consumes more chip area. Long interconnection paths adversely affect circuit performance. Multilevel interconnections (conductor/insulator/conductor) offer an attractive solution to increase the packing density and circuit performance. The application of PtSi/(Ti: W)/(Al-Cu)/SiO2 /(Ti: W)/A1 film layers in the fabrication of a bipolar VLSI circuit with a minimum feature size of 1.25 μm is illustrated. As the complexity of VLSI circuits continues to grow with micron size device structures, three or more levels of interconnections compatible with shallow junctions on the substrates and complex packaging technologies are required. Areas of concern and desirable features in VLSI metallization are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bloch, E., VLSI trends. In Huff, H. R., Kriegler, R. J. and Takeishi, Y. (eds.), Semiconductor Silicon 1981 Proc., Vol. 81–5, Electrochemical Society, Pennington, NJ, 1981, pp. 2032.Google Scholar
2 Posa, J. G., Electronics, 54 (1981) 89, 117.Google Scholar
3 Sumney, L. W., IEEE Spectrum, 17 (4) (1980) 2427.Google Scholar
4 Sello, H. in Schwartz, B. (ed.), Ohmic Contacts to Semiconductors, Electrochemical Society Softbound Symposium Series, Electrochemical Society, New York, 1969, p. 277.Google Scholar
5 Learn, A. J., J. Electrochem. Soc., 123 (1976) 894.Google Scholar
6 Ghate, P. B., Blair, J. C. and Fuller, C. R., Thin Solid Films, 45 (1977) 69.Google Scholar
7 Totta, P. A. and Sopher, R. P., IBMJ. Res. Dev., 13 (1969) 226;Google Scholar
7a 14 (1970) 461.Google Scholar
8 Lane, C. H., Metall. Trans., 1 (1970) 713.Google Scholar
9 McCaldin, J. O. and Sankur, H., Appl. Phys. Lett., 19 (1971) 524;Google Scholar
9a 20 (1972) 171.Google Scholar
10 Sankur, J., McCaldin, J. O. and Devaney, J., Appl. Phys. Lett., 22 (1973) 64.Google Scholar
11 Ames, I., d'Heurle, F. and Hostmann, R., IBM J. Res. Dev., 14 (1970) 461.CrossRefGoogle Scholar
12 Learn, A. J., J. Electron. Mater., 5 (1976) 531.Google Scholar
13 Ghate, P. B., Electromigration testing of Al-alloy films, RADC Tech. Rep. 80328, October 1980 (Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base, New York);CrossRefGoogle Scholar
13a Proc. 19th Annu. Reliability Physics Symp., IEEE, New York, 1981, p. 243;Google Scholar
13b Thin Solid Films, 83(1981) 195.CrossRefGoogle Scholar
14 Card, H. C., Metal-Semiconductor Contacts, in Inst. Phys. Conf. Ser. 22 (1974) 129;Google Scholar
14a Solid State Commun., 16 (1975) 87.Google Scholar
15 Reith, T. M. and Schick, J. D., Appl. Phys. Lett., 25 (1974) 524.Google Scholar
16 Reith, T. M., Appl. Phys. Lett., 28(1976) 3.Google Scholar
17 Lepselter, M. P., Bell Syst. Tech. J., 45 (1966) 233.Google Scholar
18 Lepselter, M. P. and Andrews, J. M., in Schwartz, B. (ed.), Ohmic Contacts to Semiconductors, Electrochemical Society Softbound Symposium Series, Electrochemical Society, New York, 1969, p. 159.Google Scholar
19 Yu, A. Y. C., Solid-State Electron., 13 (1970) 239.Google Scholar
20 Sinha, A. K., J. Electrochem. Soc., 120 (1973) 1767.Google Scholar
21 Poate, J. M. and Tisone, T. C., Appl. Phys. Lett., 24 (1974) 391.Google Scholar
22 Tu, K. N. and Mayer, J. W., Silicide formation. In Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films: Interdiffusion and Reactions, Wiley-Interscience, New York, 1978, pp. 359405.Google Scholar
23 Ottaviani, G. and Mayer, J. W., Mechanisms and interfacial layers in silicide formation. In Howes, M. J. and Morgan, D. V. (eds.), Reliability and Degradation, Wiley, New York, 1981, pp. 105149.Google Scholar
24 Rand, M. J. and Roberts, J. F., J. Electrochem. Soc., 120 (1973) 686;Google Scholar
24a Appl. Phys. Lett., 24 (1974) 49.Google Scholar
25 Kingzett, T. J. and Ladas, C. A., J. Electrochem. Soc., 122 (1975) 1729.Google Scholar
26 Crider, C. A. and Poate, J. M., Appl.Phys. Lett., 36 (1980) 417.Google Scholar
27 Danyluk, S. A. and McGuire, G. E., J. Appl. Phys., 45 (1974) 514.Google Scholar
28 Pretorius, R., Botha, A. P. and Lombaard, J. C., Thin Solid Films, 79 (1981) 6168.CrossRefGoogle Scholar
29 Canali, C., Majni, G., Ottaviani, G. and Celotti, G., J. Appl. Phys., 50 (1979) 155.Google Scholar
30 Blattner, R. J., Evans, C. A. Jr., Lau, S. S., Mayer, J. W. and Ullrich, B. M., J. Electrochem. Soc., 122 (1975) 1732.Google Scholar
31 Pretorius, R., Strydom, W. and Mayer, J. W., Phys. Rev. B, 22 (4) (1980) 1885.Google Scholar
32 Tada, K. and Laraya, J. L. R., Proc. IEEE, 55 (1967) 2064.Google Scholar
33 Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 2nd edn., 1981, p. 303.Google Scholar
34 Christian, J. W., The Theory of Transformations in Metals and Alloys, Pergamon, New York, 1965.Google Scholar
35 Chang, C. C. in Kane, P. F. and Larrabee, G. R. (eds.), Characterization of Solid Surfaces, Plenum, New York, 1974, p. 539.Google Scholar
36 Crider, C. A., Poate, J. M., Rowe, J. E., Sheng, T. T. and Ferris, S. D., J. Vac. Sci. Technol., 17(1980) 433.CrossRefGoogle Scholar
37 Foell, H., Ho, P. S. and Tu, K. N., J. Appl. Phys., 52(1981)250.Google Scholar
38 Eizenberg, M., Foell, H. and Tu, K. N., J. Appl. Phys., 52 (1981) 861.Google Scholar
39 Bensen, K. E., Lin, W. and Martin, E. P. in Huff, H. R., Kriegler, R. J. and Takeishi, Y. (eds.), Semiconductor Silicon 1981 Proc., Vol. 81–5, Electrochemical Society, Pennington, NJ, 1981, p. 33.Google Scholar
40 Blair, J. C. and Ghate, P. B., J. Vac. Sci. Technol., 14 (1977) 79.CrossRefGoogle Scholar
41 Shockley, W., Research and investigation of inverse epitaxial VHF power transistors, Final Tech. Rep. AL-TDR-64-207, September 1964, p. 113 (Air Force Atomic Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, OH).Google Scholar
42 Tsaur, B. Y., Silversmith, D. J., Mountain, R. W., Hung, L. S., Lau, S. S. and Sheng, T. T., J. Appl. Phys., 52 (1981) 5243.Google Scholar
43 Shannon, J. M., Appl. Phys. Lett., 24 (1974) 369;CrossRefGoogle Scholar
43a Shannon, J. M., Appl. Phys. Lett., 25 (1974) 75.Google Scholar
44 Berger, H. H. and Wiedmann, S. K., IEEE J. Solid-State Circuits, 7 (October 1972) 340346;Google Scholar
44a 1974 IEEE Int. Solid State Circuits Conf., Tech. Dig, IEEE, New York, February 1975, pp. 172173;Google Scholar
44b Microelectronics, 7 (1976) 35.Google Scholar
45 Sloan, B. J., STL technology, in 1979 Int. Electron Devices Meet., Dig. Tech. Papers, Washington, DC, IEEE, New York, 324327.Google Scholar
46 Cunningham, J. A., Solid-State Electron., 8 (1965) 735.Google Scholar
47 Ghate, P. B., Blair, J. C., Fuller, C. R. and McGuire, G. E., Thin Solid Films, 53 (1978) 117.Google Scholar
48 Nicolet, M.-A. and Bartur, M., J. Vac. Sci. Technol., 19 (1981) 786.Google Scholar
49 Liu, T. S., Rodrigues deMiranda, W. R. and Zipperlin, R. P., Solid State Technol., 23 (3) (1980) 71.Google Scholar
50 Lymann, J., Electronics, 51 (20) (1978) 117.Google Scholar
51 Gardiner, K. M. and Halley, S. R., Solid State Technol., 24 (10) (1981) 117.Google Scholar
52 Cunningham, J. A., Fuller, C. R. and Haywood, C. T., IEEE Trans. Reliab., 19 (1970) 182.Google Scholar
53 Cunningham, J. A. and Fuller, C. R., U.S. Patent 3,833,842, March 9, 1976.Google Scholar
54 Herman, J. M. III, Evans, S. A. and Sloan, B. J., IEEE J. Solid-State Circuits, 12 (1977) 93.Google Scholar
55 Evans, S. A., Morris, S. A., Arledge, L. A., Englade, J. O. and Fuller, C. R., IEEE Trans. Electron Devices, 27 (1980) 1373.Google Scholar
56 Blech, I. A. and Sello, H., RADC Tech. Rep. 66–31, 1965 (Rome Air Development Center, Griffiss Air Force Base, New York);Google Scholar
56a Phys. Failure Electron., 5 (1967) 496.Google Scholar
57 d'Heurle, F. M., Ainslie, N. G., Gangulee, A. and Shino, M. C., J. Vac. Sci. Technol., 9 (1972) 289.Google Scholar
58 d'Heurle, F. M. and Ho, P. S., Electromigration in thin films. In Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films: Interdiffusion and Reactions, Wiley, New York, 1978, pp. 234304.Google Scholar
59 Ghate, P. B., Failure mechanism studies in multilevel metallization systems, RADC Final Tech. Rep. 71186, September 1971 (Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base, New York).Google Scholar
60 Ghate, P. B. and Fuller, C. R., in Huff, H. R., Kriegler, R. J. and Takeishi, Y. (eds.), Semiconductor Silicon 1981 Proc., Vol. 81–5, Electrochemical Society, Pennington, NJ, 1981, p. 680.Google Scholar
61 d'Heurle, F., Berenbaum, L. and Rosenberg, R., Trans. Metall. Soc. AIME, 242 (1968) 502.Google Scholar
62 Ghate, P. B. and Hall, L. H., J. Electrochem. Soc., 119 (1972) 491.Google Scholar
63 Murakami, M., J. Appl. Phys., 52 (1981) 1309, 1320.Google Scholar
64 Ghate, P. B. and Blair, J. C., Thin Solid Films, 55 (1978) 113.Google Scholar
65 Ghate, P. B., Proc. 19th Reliability Physics Symp., IEEE, New York, p. 243.Google Scholar
66 Bentley, J. L., Haken, D. and Hon, R. W., Statistics on VLSI Designs, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, April 1980.Google Scholar
67 Dansky, A. H., Electronics, 53 (1980) 146;Google Scholar
67a Int. Electron Devices Meet., Dig. Tech. Papers, 1980, IEEE, New York, p. 674.Google Scholar
68 Vaidya, S., Sheng, T. T. and Sinha, A. K., Appl. Phys. Lett., 36 (1980) 464.CrossRefGoogle Scholar
69 Kinsborn, E., Appl. Phys. Lett., 36 (1980) 968.Google Scholar
70 Vaidya, S., Fraser, D. B. and Sinha, A. K., Proc. 18th Reliability Physics Symp., IEEE, New York, 1980, p. 165.Google Scholar
71 Santaro, C. J. and Tolliver, D. L., Proc. IEEE, 59 (1971) 1403.CrossRefGoogle Scholar
72 Reinberg, A., Electrochemical Society Meet., San Francisco, CA, May 1974, Vol. 74–1 Google Scholar
72a 1974, Extended Abstract 6; U.S. Patent 3, 757–733, September 11, 1973.Google Scholar
73 Sato, K., Harada, S., Saiki, A., Kimura, T., Okubo, T. and Mukai, K., IEEE Trans. Parts, Hybrids, Packag., 9 (1973) 176.Google Scholar
74 Saiki, A., Harada, S., Okubo, T., Mukai, K. and Kimura, T., J. Electrochem. Soc., 124 (1977) 1619.Google Scholar
75 Wilson, A. M., Laks, D. and Davis, S. M., American Chemical Society Extended Abstracts, Vol. 43, August 1980, p. 470.Google Scholar
76 Cunningham, J. A., Gardner, W. R. and Wood, S. J., in Schwartz, B. (ed.), Ohmic Contacts to Semiconductors, Electrochemical Society Softbound Symposium Series, Electrochemical Society, New York, 1969, p. 299.Google Scholar
77 Vossen, J. L., Schanble, G. L. and Kern, W., J. Vac. Sci. Technol., 11 (1974) 60.Google Scholar
78 Logan, J. S., Maddocks, F. S. and Davidse, P. D., IBM J. Res. Dev., 14 (1970) 182.Google Scholar
79 Lechaton, J. S., Electrochemical Society Meet., Vol. 79–2, 1979, Extended Abstract 585, p. 1466.Google Scholar
80 Behrndt, K. H., J. Vac. Sci. Technol., 9 (1972) 995.Google Scholar
81 Blech, I. A., Fraser, B. D. and Haszko, E. M., J. Vac. Sci. Technol., 15 (1978) 13.Google Scholar
82 Fuller, C. R. and Ghate, P. B., Thin Solid Films, 64 (1979) 25.Google Scholar
83 Ghate, P. B., Gardner, W. R. and Crosthwait, D. L., IEEE Trans. Reliab., 22 (1973) 186.Google Scholar
84 Wilson, A. M. and Ghate, P. B., in Huff, H. R. and Sirtl, E. (eds.), Semiconductor Silicon 1977 Proc., Vol. 77–2, Electrochemical Society, Princeton, NJ, 1977, p. 1047.Google Scholar
85 Crowder, B. L. and Zirinsky, S., IEEE Trans. Electron Devices, 26 (1979) 369.Google Scholar
86 Murarka, S. P., in Huff, H. R., Kriegler, R. J. and Takeishi, Y. (eds.), Semiconductor Silicon 1981 Proc., Vol. 81–5, Electrochemical Society, Pennington, NJ, 1981, p. 551.Google Scholar
87 Sinha, A. K., J. Vac. Sci. Technol., 19 (3) (1981) 778.Google Scholar
88 Vossen, J.L., J. Vac. Sci. Technol., 19 (3) (1981) 761.Google Scholar