Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:07:12.856Z Has data issue: false hasContentIssue false

The Metallic State of Conducting Polymers: Microwave Dielectric Response and Optical Conductivity

Published online by Cambridge University Press:  16 February 2011

A. J. Epstein
Affiliation:
The Ohio State University, Department of Physics, Columbus, OH 43210–1106
J. Joo
Affiliation:
The Ohio State University, Department of Physics, Columbus, OH 43210–1106
R. S. Kohlman
Affiliation:
The Ohio State University, Department of Physics, Columbus, OH 43210–1106
A. G. Macdiarmid
Affiliation:
University of Pennsylvania, Department of Chemistry, Philadelphia, PA 19104–6323
J. M. Weisinger
Affiliation:
University of Pennsylvania, Department of Chemistry, Philadelphia, PA 19104–6323
Y. Min
Affiliation:
University of Pennsylvania, Department of Chemistry, Philadelphia, PA 19104–6323
J. P. Pouget
Affiliation:
Université Paris Sud, Laboratoire de Physique des Solides (CNRS-URA2), 91405 Orsay, France
J. Tsukamoto
Affiliation:
Toray Industries, Specialty Polymers Laboratory, Shiga 520 Japan
Get access

Abstract

Recent advances in processing of polyaniline and polyacetylene have resulted in a new generation of conducting polymers with higher dc conductivities. We present the temperature (T) dependent microwave frequency dielectric constant, dc conductivity, and Kramers-Kronig analysis of conducting polyaniline and polyacetylene. The low temperature dielectric constant, ε, increases with the square of the x-ray crystalline domain length for preparations of HCl protonated polyaniline. For the highest crystalline polyaniline samples, ε increases dramatically with increasing T, supporting formation of three-dimensional (3-D) coupled “mesoscopic” Metallic regions. A “metallic” negative ε is observed for d,1-camphor sulfonie acid doped polyaniline prepared in m-cresol. Optical studies show a linear increase in reflectivity below 7000 cm-1. Below 600 cm-1 the reflectance increases rapidly. Kramers-Kronig analysis of the ir-visible results are presented. Highly conducting polyaniline is shown to have two plasma frequencies, one at ∼ 1.1 eV involving all the conduction band electrons, and one at ∼0.015 eV (120 cm-1) that is suggested to arise from the most delocalized electrons. The concept of inhomogeneous disorder is introduced. The results for polyaniline are compared to those of highly doped polyacetylene which also show metallic negative ε demonstrating the intrinsic metallic nature of the new generation of conducting polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Proc. Mat. Res. Soc. 247 (1992); Proc. Int. Conf. on Sci. and Tech.of Synth. Met., Goteborg, Sweden, 12–18 August 1992, Synth. Met. 55–57 (1993).Google Scholar
2. Chiang, C.K., Fincher, C.R. Jr, Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., and MacDiarmid, A.G., Phys. Rev. Lett. 39, 1098 (1977).Google Scholar
3. Liesing, G., Phys. Rev. B 38, 10313 (1988).CrossRefGoogle Scholar
4. Woo, H.S., Tanner, D.B., Theophilou, N., and MacDiarmid, A.G., Synth. Met. 41–43, 159 (1991).CrossRefGoogle Scholar
5. Tanaka, J., Hasegawa, S., Miyamae, T., and Shimizu, M., Synth. Met. 41–43, 1199 (1991).CrossRefGoogle Scholar
6. MacDiarmid, A.G., Min, Y., Wiesinger, J.M., Oh, E.J., Scherr, E.M., and Epstein, A.J., Synth. Met. 55, 753 (1993).CrossRefGoogle Scholar
7. Oh, E.J., Min, Y., Weisinger, J.M., Manohar, S.K., Scherr, E.M., Prest, P.J., MacDiarmid, A.G., and Epstein, A.J., Synth. Met. 55, 977 (1993).CrossRefGoogle Scholar
8. MacDiarmid, A.G. and Epstein, A.J., Faraday Discuss. Chem. Soc. 88, 317 (1989);CrossRefGoogle Scholar
Cromack, K.R., Jozefowicz, M.E., Ginder, J.M., McCall, R.P., Du, G., Leng, J.M., Kim, K., Li, C., Wang, Z.H., Epstein, A.J., Druy, M.A., Glatkowski, P.J., Scherr, E.M., and MacDiarmid, A.G., Macro Molecules 28, 4157 (1991).Google Scholar
9. MacDiarmid, A.G., Weisinger, J.M., and Epstein, A.J., Bull. Am. Phys. Soc. 38, 311 (1993);Google Scholar
MacDiarmid, A.G. and Epstein, A.J., Trans. 2nd Congresso Brazileiro de Polimeros, São Paulo, Brazil, Oct. 5–8, 1993, p. 544;Google Scholar
Min, Y., MacDiarmid, A.G., and Epstein, A.J., Polymer Preprints, in press;Google Scholar
MacDiarmid, A.G. and Epstein, A.J., these proceedings.Google Scholar
10. Epstein, A.J., Joo, J., Wu, C.Y., Benatar, A., Faisst, C.F. Jr, Zegarski, J., and MacDiarmid, A.G., in Intrinsically Conducting Polymers: An Emerging Technology, p. 165 (1993), ed. by Aldissi, M., Kluwer Academic Publishers.Google Scholar
11. Cao, Y., Smith, P., and Heeger, A.J., Synth. Met. 48, 91 (1992);Google Scholar
Cao, Y. and Heeger, A.J., Synth. Met. 52, 193 (1992).CrossRefGoogle Scholar
12. Tsukamoto, J., Takahashi, A., and Kawasaki, K., Jpn. J. Appl. Phys. 29, 125 (1990).CrossRefGoogle Scholar
13. Zuo, F., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A. J., Phys. Rev. B 36, 3475 (1987).Google Scholar
14. Wang, Z.H., Ray, A., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 43, 4373 (1991).Google Scholar
15. Wang, Z., Li, C., Epstein, A.J., Scherr, E.M., and MacDiarmid, A.G., Phys. Rev. Lett. 66, 1745 (1991).Google Scholar
16. Wang, Z.H., Scherr, E.M., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 45, 4190 (1992).Google Scholar
17. Joo, J. and Epstein, A.J., to be published.Google Scholar
18. McCall, R.P., Scherr, E.M., MacDiarmid, A.G., and Epstein, A.J., to be published.Google Scholar
19. Kohlman, R.S., Min, Y., MacDiarmid, A.G., and Epstein, A.J., to be published.Google Scholar
20. Jozefowicz, M.E., Laversanne, R., Javadi, H.H.S., Epstein, A.J., Pouget, J.P., Tang, X., and MacDiarmid, A.G., Phys. Rev. B 39, 12, 958 (1989).Google Scholar
21. Pouget, J.P., Jozefowicz, M.E., Epstein, A.J., Tang, X., and MacDiarmid, A.G., Macromolecules 24, 779 (1991).Google Scholar
22. Jozefowicz, M.F., Epstein, A.J., Pouget, J.P., Masters, J.G., Ray, A. and MacDiarmid, A.G., Mac romolecules 25, 5863 (1991).Google Scholar
23. Laridjani, M., Pouget, J.P., Scherr, E.M., MacDiarmid, A.G., Jozefowicz, M.E., and Epstein, A.J., Macromolecules 25, 4106 (1992).Google Scholar
24. Joo, J., Oblakowski, Z., Du, G., Pouget, J. P., Oh, E. J., Wiesinger, J. M., Min, Y., MacDiarmid, A. G. and Epstein, A. J., to be published.Google Scholar
25. Prigodin, V.N. and Efetov, K.B‥, Phys. Rev. Lett. 70, 2932 (1993).Google Scholar
26. Mott, N.F. and Kaveh, M., Adv. Phys. 34, 329 (1985).Google Scholar
27. Lee, K., Heeger, A.J., and Cao, Y., to be published.Google Scholar
28. Phillips, P. and Wu, H.L., Science 252, 1805 (1991).CrossRefGoogle Scholar
29. Mizoguchi, K., Nechtschein, M., Travers, J.P., and Menardo, C., Phys. Rev. Lett. 63, 66 (1989).Google Scholar
30. Ginder, J.M., Richter, A.F., MacDiarmid, A.G., and Epstein, A.J., Solid State Commun. 63, 97 (1987).Google Scholar
31. Pouget, J.P., Oblakowski, Z., Nogami, Y., Albouy, P.A., Laridjani, M., Oh, E.J., Min, Y., MacDiarmid, A.G., Tsukamuto, J., Ishiguro, T., and Epstein, A.J., Synth. Met., in press.Google Scholar
32. Joo, J., Du, G., Tsukamoto, J., and Epstein, A.J., to be published.Google Scholar