Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:01:00.022Z Has data issue: false hasContentIssue false

Melting Phenomena and Interfacial Instability Associated with Laser Irradiation*

Published online by Cambridge University Press:  15 February 2011

J. Narayan*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

The work on annealing of displacement damage, dissolution of boron precipitates, dopant redistribution and formation of constitutional supercooling cells using pulsed ruby and dye laser irradiation is reviewed in order to provide convincing evidence for melting as a primary mechanism of laser annealing. The nature of the liquid-solid interface and the interfacial instability during laser-induced rapid crystal growth are considered in detail. Solute concentrations after laser annealing can far exceed retrograde solubility limits, but there is a critical concentration above which a planar liquid-solid interface becomes unstable and breaks into cellular structures. The solute concentrations and cell sizes associated with this instability have been studied as a function of crystal-growth velocity and these results compared with calculations of the perturbation theory. Good agreement between the experimental results and the theory was obtained when the dependence of the distribution coefficient upon crystal growth velocity was taken into account in the calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U. S. Department of Energy under contract W–7405–eng–26 with Union Carbide Corporation.

References

REFERENCES

1. Narayan, J., White, C. W. and Young, R. T., J. Appl. Phys. 49, 3912 (1978).Google Scholar
2. White, C. W., Narayan, J. and Young, R. T., Science 204, 461 (1979).Google Scholar
3. Williams, J. S., Brown, W. L., Celler, G. K., Leamy, H. J., Poate, J. M., Rozgonyi, G. A. and Sheng, To T., J. Appl. Phys. 52, 1038 (1981).Google Scholar
4. Narayan, J., Appl. Phys. Lett. 34, 312 (1979);Google Scholar
4a J. Electrochem. Soc. 80–1, 294 (1980).Google Scholar
5. Narayan, J. and White, C. W., Phil. Mag. 43, 1513 (1981).Google Scholar
6. Narayan, J., J. Appl. Phys. 52, 1289 (1981);Google Scholar
6a Cullis, A. G., Hurle, D.T.J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P. and Foti, G., Appl. Phys. Lett. 38, 642 (1981);Google Scholar
6b Narayan, J. and Fletcher, J., p. 431 in Defects in Semiconductors, ed. by Narayan, J. and Tan, T. Y., North Holland, New York, 1981.Google Scholar
7. Wang, J. C., Wood, R. F. and Pronko, P. P., Appl. Phys. Lett. 33, 455 (1978);Google Scholar
7a Wood, R. F. and Giles, G. E., Phys. Rev B 23, 2923 (1981).Google Scholar
8. White, C. W., Christie, W. H., Appleton, B. R., Wilson, S. R., Pronko, P. P. and Magee, C. W., Appl. Phys. Lett. 33, 662 (1978).Google Scholar
9. Brown, W. L., p. 1 in Laser and Electron Beam Solid Interactions and Materials Processing, ed. by Gibbon, J. F., Hess, L. D., Sigmon, T. W., North Holland, New York, 1980.Google Scholar
10. Van Vechten, J. A., Tsu, R., Saris, F. W. and Hoonhout, D., Phys. Lett. 74a, 417 (1979);Google Scholar
10a Van Vechten, J. A., Tsu, R. and Saris, F. W., Phys. Lett. 74a, 422 (1979).Google Scholar
11. Khailbullin, I. B., Shtyrkov, B. I., Zaripov, M. M., Bayazitov, R. M. and Galjautdinov, M. F., Rad. Eff. 36, 225 (1978).Google Scholar
12. Lo, H. W. and Compaan, A., Phys. Rev. Lett. 44, 1604 (1980).Google Scholar
13. Narayan, J., Fletcher, J., White, C. W. and Christie, W. H., J. Appl. Phys. 52, 7121 (1981).Google Scholar
14. Narayan, J. and Young, F. W. Jr., Appl. Phys. Lett. 35, 330 (1979).Google Scholar
15. Spaepen, F. and Turnbull, D., p. 73 in Laser-Solid Interactions and Laser Processing–1978, ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., AIP Conference Proceedings 50, 1979.Google Scholar
16. Kodera, H., Jap. J. Appl. Phys. 2, 212 (1963).Google Scholar
17. Grove, A. S., p. 38, 39, 45 in Physics and Technology of Semiconductor Devices, Wiley, New York, 1967.Google Scholar
18. Morris, L. R. and Winegard, W. C., J. Cryst. Growth 5, 361 (1969).Google Scholar
19. Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
20. Sekerka, R. F., J. Appl. Phys. 36, 264 (1965).Google Scholar
21. Wood, R. F., Appl. Phys. Lett. 37, 302 (1980).Google Scholar
22. Shashkov, Yu. M. and Gurevich, V. M., Russ. J. Phys. Chem. 42, 1082 (1968).Google Scholar
23. Lee, M. C., Lo, H. W., Aydinli, A. and Compaan, A., Appl. Phys. Lett. 38, 499 (1981).Google Scholar