Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:20:17.007Z Has data issue: false hasContentIssue false

Melting of Aromatic Compounds: Molecular Dynamics Simulations

Published online by Cambridge University Press:  10 February 2011

P. W.-C. Kung
Affiliation:
Albemarle Corp., 8000 G.S.R.I. Ave., Baton Rouge, LA70820
J. T. Books
Affiliation:
Albemarle Corp., 8000 G.S.R.I. Ave., Baton Rouge, LA70820
C. M. Freeman
Affiliation:
Biosym / MSI, 9685 Scranton Road, San Diego, CA 92121
S. M. Levine
Affiliation:
Albemarle Corp., 8000 G.S.R.I. Ave., Baton Rouge, LA70820
B. Vessali
Affiliation:
Biosym / MSI, 9685 Scranton Road, San Diego, CA 92121
J. M. Newsam
Affiliation:
Biosym / MSI, 9685 Scranton Road, San Diego, CA 92121
M. L. Klein
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

We have used constant pressure molecular dynamics calculations to explore the behavior at various temperatures of two molecular crystals: benzene and a brominated phenyl compound. We observed a melting transition by heating the crystals from a low temperature. In the case of benzene, we performed one heating run of about 1 ns and obtained agreement with the experimental melting point to within some 8%. We have also simulated the melting of a more complex molecular crystal that contains bromine and phenyl groups. We performed four heating runs, with different rates of heating. For total simulation times of about 100, 220, 770, and 1 I50ps, the heating runs predicted melting temperatures that differed from the experimental melting temperature by 53%, 33%, 25%, and 9% respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fecht, H. J., Nature, 356, 133 (1992).Google Scholar
2. Cahn, R. W., Nature, 356, 109 (1992).Google Scholar
3. Oxtoby, D. W., Nature, 347, 725 (1990).Google Scholar
4. Cahn, R. W., Nature, 323, 668 (1986).Google Scholar
5. Wright, J. D., Molecular Crystals Cambridge University Press, Cambridge, U.K., 1995.Google Scholar
6. Ubbelohde, A. R., The Molten State of Matter, John Wiley & Sons, Chicester, 1978.Google Scholar
7. Barrat, J. -L. and Klein, M. L., Annu. Rev. Phys. Chem., 42, 23 (1991).Google Scholar
8. Fredickson, G. H., Ann. Rev. Phys. Chem., 39, 149 (1988).Google Scholar
9. Marchi, M. and Klein, M. L., Naturforsch, Z., 44, 585 (1989).Google Scholar
10. Sindzingre, P. and Klein, M. L., J. Chem. Phys., 96, 4681 (1992).Google Scholar
11. Roe, R.-J., J. Chem. Phys., 100, 1610 (1994).Google Scholar
12. Kim, S. G. and Tomanek, D., Phys. Rev. Lett., 72, 2418 (1994).Google Scholar
13. Signorini, G. F., Barrat, J.-L. and Klein, M. L., J. Chem. Phys., 92, 1294 (1990).Google Scholar
14. Ferneyhough, R., Fincham, D., Price, G. D. and Gillan, M. J., Modelling Simul. Mater. Sci. Eng., 2, 1101 (1994).Google Scholar
15. Nakano, A., Bi, L., Kalia, R. K. and Vashista, P., Phys. Rev. Lett., 71, 85 (1993).Google Scholar
16. Vessal, B. M., Amini, , Fincham, D. and Catlow, C. R. A., Phil. Mag. B, 60, 753 (1989).Google Scholar
17. Broughton, J. Q. and Li, X. P., Phys. Rev. B, 35, 9120 (1987).Google Scholar
18. Horsfield, A. P. and Clancy, P., Modelling Simul. Mater. Sci. Eng., 2, 277 (1994).Google Scholar
19. Sugino, O. and Car, R., Phys. Rev. Lett., 74, 1823 (1995).Google Scholar
20. Phillpot, S. R., Yip, S. and Wolf, D., Computers in Physics, 3, 20 (1989).Google Scholar
21. Lutsko, J. F., Wolf, D., Phillpot, S. R. and Yip, S., Phys. Rev. B, 40, 2841 (1989).Google Scholar
22. Kulp, T. D., Ackland, G. J., Sob, M., Vitek, V. and Egami, T., Modelling Simul. Mater. Sci. Eng., 1, 315 (1993).Google Scholar
23. Williams, D. E., J. Chem. Phys., 45, 3770 (1966).Google Scholar
24. Evans, D. J. and Watts, R. O., Mol. Phys., 31, 83 (1976).Google Scholar
25. Williams, D. E. and Starr, T. L., Comput. Chem., 1, 173 (1977).Google Scholar
26. Hall, D., Starr, T. H., Williams, D. E. and Wood, M. K., Acta Cryst., A 36, 494 (1980).Google Scholar
27. Steinhauser, O., Chem. Phys., 73, 155 (1982).Google Scholar
28. Claessens, M., Ferrario, M. and Ryckaert, J.-P., Mol. Phys., 50, 217 (1983).Google Scholar
29. Price, S. L. and Stone, A. J., Mol. Phys., 51, 569 (1984).Google Scholar
30. Adan, F. Serrano, Bafion, A. and Santamaria, J., Chem. Phys., 86, 433 (1984).Google Scholar
31. Linse, P., J. Am. Chem. Soc., 106, 5425 (1984).Google Scholar
32. Linse, P., Engstrom, S. and Jonsson, B., Chem. Phys. Lett., 115, 95 (1985). 331Google Scholar
33. Anderson, J., Ullo, J. J. and Yip, S., J. Chem. Phys., 86, 4078 (1987).Google Scholar
34. Pettersson, I. and Liljefors, T., J. Comput. Chem., 8, 1139 (1987).Google Scholar
35. Gupta, S., Sediawan, W. B. and McLaughlin, E., Mol. Phys., 65, 961 (1988).Google Scholar
36. Yashonath, S., Price, S. L. and McDonald, I. R., Mol. Phys., 64, 361 (1988).Google Scholar
37. Dzyabchenko, A. V., Soy. Phys. Crystallogr., 34, 131 (1989).Google Scholar
38. Ostheimer, M. and Bertagnoli, H., Z. Phys. Chem., 162, 171 (1989).Google Scholar
39. Pavlides, P., Pugh, D. and Roberts, K. J., Acta Cryst., A 47, 846 (1991).Google Scholar
40. Thiery, M. M., Besson, J. M. and Bribes, J. L., J. Chem. Phys., 96, 2633 (1992).Google Scholar
41. Nagy, J., Smith, V. H. Jr., , and Weaver, D. F., J. Phys. Chem., 99, 13868 (1995),Google Scholar
42. Gibson, K. D. and Scheraga, H. A., J. Phys. Chem., 99, 3765 (1995).Google Scholar
43. Stillinger, F. H. and Weber, T. A., Phys. Rev. B, 31, 5262 (1985).Google Scholar
44. Levesque, D., Weis, J.-J. and Klein, M. L., Phys. Rev. Lett., 51, 670 (1983).Google Scholar
45. Frenkel, D., Phys. Rev. Lett., 56, 858 (1986).Google Scholar
46. Sun, H., Mumby, S. J., Maple, J. R. and Hagler, A. T., J. Am. Chem. Soc., 116, 2978 (1994).Google Scholar
47. Sun, H., J. Comp. Chem., 15, 752 (1994).Google Scholar
48. Sun, H., Mumby, S. J., Maple, J. R. and Hagler, A. T., J. Phy. Chem., 99, 5873 (1995).Google Scholar
49. Sun, H., Macromolecules, 28, 701 (1995).Google Scholar
50. Maple, J., Dinur, U., Hagler, A. T., Proc. Nat. Acad. Sci. USA, 85, 5350 (1988).Google Scholar
51. Maple, J. R., Thacher, T. S., Dinur, U., Hagler, A. T., Chemical Design Automation News, 5, 5 (1990).Google Scholar
52. Discover User Guide, version 2.9/3.1, San Diego: Biosym Technologies, 1993 Google Scholar