Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T16:32:02.919Z Has data issue: false hasContentIssue false

Mechanochemical Synthesis of Novel Sensor Materials

Published online by Cambridge University Press:  31 January 2011

Monica Sorescu
Affiliation:
[email protected], Duquesne University, Physics, 600 Forbes Avenue, 211 Bayer Center, Pittsburgh, Pennsylvania, 15282-0321, United States, 412-396-4166, 412-396-4829
Lucian Diamandescu
Affiliation:
[email protected], National Institute of Materials Physics, Bucharest, Romania
Adelina Tomescu
Affiliation:
[email protected], National Institute of Materials Physics, Bucharest, Romania
Get access

Abstract

The xZnO-(1-x)alpha-Fe2O3 and xZrO2-(1-x)alpha-Fe2O3 nanoparticles systems have been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 hours. Structural and magnetic characteristics of the zinc and zirconium-doped hematite systems were investigated by X-ray diffraction (XRD), Mössbauer spectroscopy and conductivity measurements. Using the dual absorber method, the recoilless fraction was derived as function of ball milling time for each value of the molar concentration involved. As ZnO is not soluble in hematite in the bulk form, the present study clearly illustrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthetic route allowed us to reach nanometric particle dimensions, which makes these materials very important for gas sensing applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gopel, W. Sens. Actuators B 18-19, 1 (1994).Google Scholar
2 Yamazoe, N. Miura, N. Sens. Actuators B 20, 95 (1994).Google Scholar
3 Tamaki, J. Naruo, C. Yamamoto, Y. Matsuoka, M. Sens. Actuators B 83, 190 (2002).Google Scholar
4 Jiang, J. Z. Liu, R. Nielsen, K. Poulsen, F. W. Berry, F. J. Clasen, R. Phys. Rev. B 55 11 (1997).Google Scholar
5 Jiang, J. Z. Liu, R. Nielsen, K. Morup, S. Dam-Johansen, K., Clasen, R. J. Phys. D: Appl. Phys. 30, 1459 (1997).Google Scholar
6 Zhu, W. Tan, O. K. Jiang, J. Z. J. Mater. Electron. 9, 275 (1998).Google Scholar
7 Tan, O. K. Zhu, W. Yan, Q. Kong, L. B. Sens. Actuators B 65, 361 (2000).Google Scholar
8 Reddy, C. V. Gopal, Cao, W. Tan, O. K. Zhu, W. Sens. Actuators B 81, 170 (2002).Google Scholar
9 Cassedanne, J. An. Bras. Cienc. 38, 265 (1966).Google Scholar
10 Takano, H. Bando, Y. Nakanishi, N. Sakai, M. Okinaka, H. J. Solid State Chem. 68, 153 (1987).Google Scholar
11 Smolira, A. Szymanska, M. Jartych, E. Calka, A. Michalak, L. J. Alloys and Comp. 402, 256 (2005).Google Scholar
12 Sorescu, M. Mater. Lett. 54, 256 (2002).Google Scholar
13 Sorescu, M. Diamandescu, L. Teodorescu, V.S., Physica B 403. 3838 (2008).Google Scholar
14 Sorescu, M. Diamandescu, L. Tomescu, A. Tarabasanu-Mihaila, D., Teodorescu, V. Mater. Chem. Phys. 107, 127 (2008).Google Scholar
15 Sorescu, M. Diamandescu, L. Tarabasanu-Mihaila, D., Teodorescu, V.S. and Howard, B.H., J. Phys. Chem. Solids 65, 1021 (2004).Google Scholar
16 Sorescu, M. Diamandescu, L. and Tarabasanu-Mihaila, D., J. Phys. Chem. Solids 65, 1719 (2004).Google Scholar