Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T09:04:11.715Z Has data issue: false hasContentIssue false

Mechanisms of Cu<111> Columns Growth

Published online by Cambridge University Press:  01 February 2011

Jian Wang
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

The Cu <111> columns, which are formed during magnetron sputtering deposition, are faceted on the top and zigzag on sides. Our numerical results of large facet-facet diffusion barriers offer an explanation of the facet dimension. Based on the stacking fault formation energies of various face-centered-cubic metals, we suggest that the zigzag shape of Cu <111> columns is a result of deposition twins. Our molecular dynamics simulations indeed confirm this suggestion. Further, the dynamics simulations reveal the transient role of {100} facets, which facilitate the formation of {111} facets and disappear afterwards.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robbie, K. and Brett, M. J., U. S. Patent No.5, 866, 204 (1999).Google Scholar
2. Ye, D. X., Zhao, Y. P., Yang, G. R., Zhao, Y. G., Wang, G. C. and Lu, T. M., Nanotechnology 13, 615 (2002).Google Scholar
3. Zhao, Y. P., Ye, D. X., Wang, G. C. and Lu, T. M., Nano Lett. 2, 351 (2002).Google Scholar
4. Huang, H., Wei, H. L., Woo, C. H. and Zhang, X. X., Appl. Phys. Lett. 81, 4359 (2002).Google Scholar
5. Liu, S. J., Huang, H. and Woo, C. H., Appl. Phys. Lett. 80, 3295 (2002);Google Scholar
6. Huang, H. and Wang, J., Appl. Phys. Lett. 83, 4752 (2003).Google Scholar
7. Wang, J., Huang, H. and Cale, T. S., Modelling Simul. Mater. Sci. Eng. 12, 1209 (2004).Google Scholar
8. Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 2nd Edition, 1982). p. 839.Google Scholar
9. Wulff, G. and Kristallogr, Z., Mineral. 34, 449 (1901).Google Scholar
10. Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. F. and Kress, J. D., Phys. Rev. B63, 224106 (2001).Google Scholar
11. Zhou, L. G. and Huang, H., Appl. Phys. Lett. 84, 1940 (2004).Google Scholar
12. Wang, J. and Huang, H., Appl. Phys. Lett. (2005), (in press).Google Scholar
13. Huang, H., Gilmer, G. H. and Diaz de la Rubia, T., J. Appl. Phys. 84, 3636 (1998).Google Scholar