Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:38:14.058Z Has data issue: false hasContentIssue false

Mechanism(s) for the Suppression of the Switchable Polarization in PZT and BaTiO3

Published online by Cambridge University Press:  15 February 2011

William L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
Duane Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
Bruce A. Tuttle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
Gordon E. Pike
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
Mark V. Raymond
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
Robert D. Nasby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349
R. Ramesh
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349 Bellcore, Red Bank, NJ 07701
Joseph T. Evans Jr
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349 Radiant Technologies Inc., 1009 Bradbury Ave., Albuquerque, NM 87106
Get access

Abstract

Switchable polarization can be significantly suppressed in ferroelectric (FE) materials by optical, thermal, and electrical processes. The thermal process can occur by either annealing the FE in a reducing environment or by heating it in air to 100°C while impressing a bias near the switching threshold. The optical process occurs while biasing the FE near the switching threshold and illuminating with bandgap light. And the electrical suppression effect occurs by subjecting the FE to repeated polarization reversals. Using electron paramagnetic resonance, polarization-vol tage measurements, and charge injection scenarios, we have been able to elucidate both electronic and ionic trapping effects that lead to a suppression in the amount of switchable polarization in FE materials. The relative roles of electronic and ionic effects in the same material can depend on the stress condition. For instance, in oxidized BaTiO3 crystals, optical and thermal suppressions occur by electronic domain pinning; electrical fatigue in the BaTiO3 crystals also appears to involve electronic charge trapping, however, it is suggested that these electronic traps are further stabilized by nearby ionic defects. In sol-gel PZT thin films with either Pt, RuO2, or La-Sr-Co-O electrodes it appears that the polarization suppression induced by electrical fatigue, a temperature/bias combination, or a light/bias combination are all primarily due to the trapping of electronic charge carriers to first order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turtle, B.A., MRS Bull., 12, 40 (1987).Google Scholar
2. Shepard, L.M., Ceramic Bull., 71, 85 (1992).Google Scholar
3. Scott, J.F. and Paz de Arajuo, C.A., Science, 246, 1400 (1989).Google Scholar
4. Dey, S. and Zuleeg, R., Ferroelcctrics, 108, 37 (1990).Google Scholar
5. Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Pliys. Lett. 61, 1537 (1992).Google Scholar
6. Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H., and Keramidas, V.G., Appl. Phys. Lett, 63, 27 (1993).Google Scholar
7. Yoo, I.K., Desu, S.B., and Xing, J., MRS Symp. Proc, Vol., 310, 165 (1993)Google Scholar
8. Larsen, P.K., Dormans, G.J.M., Taylor, D.J., and van Veldhoven, P.J., J. Appl. Phys. 76, 2405 (1994).Google Scholar
9. Bernstein, S.D., Kisler, Y., Walii, J.M.. Bernacki, S.E., and Collins, S.R., MRS Symp. Proc, Vol. 243, 373 (1992).Google Scholar
10. Kwok, C.K. and Desu, S.B., MRS Symp. Proc, Vol. 243, 393 (1992).Google Scholar
11. Warren, W.L., Dimos, D., Turtle, B.A., Nasby, R.D., and Pike, G.E., Appl. Phys. Lett., 65, 1018 (1994).Google Scholar
12. Pan, W.Y., Yue, C.F., and Tuttle, B.A., Ceram. Trans. 25, 385 (1992).Google Scholar
13. Yoo, I.K. and Desu, S.B., MRS Symp. Proc, Vol. 243, 323 (1992).Google Scholar
14. Brennan, C.J., Parrella, R.D., and Larsen, D.E., Ferroelectrics, in press.Google Scholar
15. Lee, J., Esayan, S., Safari, A., and Ramesh, R., Appl. Phys. Lett., 65, 254 (1994).Google Scholar
16. Wu, Z. and Sayer, M., submitted to Proc Am. Ceram. Soc, PAC Rim Meeting, November, 1993, Honolulu, HI.Google Scholar
17. Dimos, D., Warren, W.L., and Tuttle, B.A., MRS Symp. Proc, Vol. 310, 87 (1993).Google Scholar
18. Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., and Schwartz, R.W., J. Appl. Phys., 76, 4305 (1994).Google Scholar
19. Dimos, D., Potter, B.G., Sinclair, M.B., Tuttle, B.A., and Warren, W.L., lnteg. Ferroelectrics, 5, 47 (1994).Google Scholar
20. Warren, W.L. and Dimos, D., Appl. Phys. Lett., 64, 866 (1994).Google Scholar
21. Warren, W.L., Dimos, D., Tuttle, B.A., and Smyth, D.M., J. Am. Ceram. Soc, 77, 2753 (1994).Google Scholar
22. Warren, W.L., Tuttle, B.A., and Dimos, D., Appl. Phys. Lett., submitted.Google Scholar
23. Remeika, J.P., J. Am. Chem. Soc, 76, 940 (1954).Google Scholar
24. Land, C.E. and Peercy, P.S., Ferroelectrics, 22, 677 (1978).Google Scholar
25. Siegel, E. and Muller, K.A., Phys. Rev. B20, 3587 (1979).Google Scholar
26. Siegel, E. and Muller, K.A., Phys. Rev. B19, 109 (1979).Google Scholar
27. Possenride, E., Jacobs, P., and Schirmer, O.F., J. Phys. Conden. Matter, 4, 4719 (1992).Google Scholar
28. Muller, K.A., J. Physique, 42, 551 (1981).Google Scholar
29. Weltner, W., in “Magnetic Atoms and Molecules”, (Dover, NY, 1983) p. 271.Google Scholar
30. Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., and Evans, J.T., Appl. Phys. Lett., in press (1995).Google Scholar
31. Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Clews, P.G., and Mclntyre, D.C., J. Appl. Phys. submitted.Google Scholar
32. Shepard, W.H., MRS Symp. Proc, Vol. 200, 277 (1990).Google Scholar
33. Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys., 70, 382 (1991).Google Scholar
34. Anderson, J.R., Brady, G.W., Merz, W.J., and Remeika, J.P., J. Appl. Phys., 26, 1387 (1955).Google Scholar