Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:14:10.700Z Has data issue: false hasContentIssue false

Mechanisms and Kinetics of Iion Beam-Induced Compositional Modifications*

Published online by Cambridge University Press:  26 February 2011

N. Q. Lam*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Near-surface compositional modification of ion-bombarded alloys results from the dynamic interplay of several atomistic processes. In addition to displacement mixing leading to t randomization of atomic locations, which is dominant at relatively low temperatures, and preferential loss of alloying elements by sputtering, many thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. The relative contributions of these processes to the evolution of the target composition profile depends on the target materials and irradiation variables. Although a good understanding of the individual processes has been achieved, information regarding their synergistic effects on alloy surface modification is still limited. In the present article, these processes will be characterized in simple physical terms, and the present understanding of their relative significance and contributions in changing the target composition during ion bombardment will be discussed in view of recent progress in theoretical modeling and experimental study.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-Eng-38.

References

REFERENCES

1. Kelly, R., Surf. Sci. 100, 85 (1980).Google Scholar
2. Kelly, R., in: Symposium on Sputtering, Varga, P., Betz, G. and Viebock, F. P., eds. (Institut fur Allgemeine Physik, Vienna 1980) p. 390.Google Scholar
3. Andersen, H. H., in: Physics of Ionized Gas (SPIG 1980), Matic, M., ed. (Boris Kidric Institute of Nuclear Sciences, Beograd 1980) p. 421.Google Scholar
4. Betz, G. and Wehner, G. K., in: Sputtering by Particle Bombardment II, Behrisch, R., ed. (Springer, Berlin 1983) p. 11.Google Scholar
5. Shimizu, R., Nucl. Instr. and Meth. B18, 486 (1987).Google Scholar
6. Lam, N. Q. and Wiedersich, H., J. Nucl. Mater. 103/104, 433 (1981).Google Scholar
7. Wiedersich, H., in: Surface Modification and Alloying, Poate, J. M., Foti, G. and Jacobson, D. C., eds. (Plenum, New York 1983) p. 261.Google Scholar
8. Wiedersich, H., Mat. Res. Soc. Symp. Proc. 27, 13 (1984).Google Scholar
9. Lam, N. Q. and Wiedersich, H., Nucl. Instr. aind Meth. B18, 471 (1987).Google Scholar
10. Rehn, L. E. and Lam, N. Q., J. Mater. Eng. 9, 205 (1987)Google Scholar
11. Lam, N. Q., Surf. Interface Anal. (1988), to be published.Google Scholar
12. Rehn, L. E., Mat. Res. Soc. Symp. Proc. 7, 17 (1982).Google Scholar
13. Rehn, L. E. and Okamoto, P. R., in: Phase Transformations during Irradiation, Nolfi, F. V. Jr., ed. (Applied Science Publishers, London, 1983) p. 247.Google Scholar
14. Ardell, A. J. and Janghorban, K., , in: Phase Transformations during Irradiation, Nolfi, F. V. Jr., ed. (Applied Science Publishers, London, 1983), p. 291.Google Scholar
15. Averback, R. S., Rehn, L. E., Wagner, W., Wiedersich, H. and Okamoto, P. R., Phys. Rev. B28, 3100 (1983).Google Scholar
16. Rehn, L. E., Wiimoto, P. R. and Averback, R. S., Phys. Rev. B30, 3073 (1984).Google Scholar
17. Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar
18. Sigmund, P., in: Sputtering by Particle Bombardment I, Behrisch, R., ed. (Springer, Berlin 1981) p. 9.Google Scholar
19. Kelly, R. and Harrison, D. E., Mater. Sci. and Eng. 69, 449 (1985).Google Scholar
20. Wynblatt, P. and Ku, R. C., in: Interfacial Segregation, Johnson, W. C. and Blakely, J. M., eds. (American Society for Metals, Metals Park, OH 1979) p. 115.Google Scholar
21. King, W. E. and Benedek, R., J. Nucl. Mater. 117, 26 (1983).Google Scholar
22. Littmark, U. and Hofer, H. O., in: Thin Film-Ind Depth Profile Analysis, Topics in Current Physics, Vol.37, Oechsner, H., ed. (Springer-Verlag, Berlin 1984) p. 159.Google Scholar
23. Averback, R. S., Nucl. Instr. and Meth. B15, 675 (1986).Google Scholar
24. Lam, N. Q. and Rothman, S. J., in: Radvat-ion Damage in Metals, Peterson, N. L. and Harkness, S. D., eds. (American Society for Metals, Metals Park, OH 1976) p. 125.Google Scholar
25. Sizmann, R., J. Nucl. Mater. 69/70, 386 (1978).Google Scholar
26. Rothman, S. J., in: Phase Transformations during Irradiation, Nolfi, F. V. Jr. (Applied Science Publishers, London 1983) p. 189.Google Scholar
27. Andersen, H. H., Appl. Phys. 18, 131 (1979).Google Scholar
28. Cheng, Y. T., Rossum, M. Van, Nicolet, M. A. and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).Google Scholar
29. Wiedersich, H. and Lam, N. Q., in: Phase Transformations during Irradiation, Nolfi, F. V. Jr., ed. (Applied Science Publishers, London 1983) p. 1.Google Scholar
30. Martin, G., Cauvin, R.-and Barbu, A., in: Phase Transformations during Irradiation, Nolfi, F. V. Jr., ed. (Applied Science Publishers, London 1983), p. 47.Google Scholar
31. Wiedersich, H., Okamoto, P. R. and Lam, N. Q., J. Nucd. Mater. 83, 98 (1979).Google Scholar
32. Johnson, R. A. and Lam, N. Q., Phys. Rev. B13, 4364 (1976); J. Nucl. Mater. 69/70, 424 (1978).Google Scholar
33. Cam, N. Q.-and Wiedersich, H., Mater. Res. Soc. Symp. Proc. 7, 35 (1982).Google Scholar
34. Lam, N. Q., Leaf, G. K. and Wiedersich, H., J. Nucl. Mater. 88, 289 (1980).Google Scholar
35. Lam, N. Q. and Hoff, H. A., Surf. Sci. (1988) in press.Google Scholar
36. Lam, N. Q., Hoff, H. A., Wiedersich, H. and Rehn, L. E., Surf. Sci. 149, 517 (1985).Google Scholar
37. Lam, N. Q., Hoff, H. A. and Regnier, P. G., J. Vac. Sci. Technol. A3, 2152 (1985).Google Scholar
38. Swartzfager, D. G., Ziemecki, S. B. and Kelly, M. J., J. Vac. Sci. Technol. 19, 185 (1981).Google Scholar
39. Regii, L. E., Danyluk, S. and Wiedersich, H., Phys. Rev. Lett. 43, 1764 (1979).Google Scholar
40. Rehn, L. E., Boccio, V. T. and Wiedersich, H., Surf. Sci. 128, 37 (1983).Google Scholar
41. Lam, N. Q., Nguyen, T., Leaf, G. K. and Yip, S., Nucl. Instr. and Meth. B (1988) to be published.Google Scholar
42. Rastogi, P. K. and Ardell, A. J., Acta. Met. 19, 321 (1971).Google Scholar