Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:27:14.405Z Has data issue: false hasContentIssue false

Mechanism of Diamond Growth on Carbide Substrates Using Fluorocarbon Gases

Published online by Cambridge University Press:  15 February 2011

K.J. Grannen
Affiliation:
Northwestern University, Department of Materials Science & Engineering, Evanston, IL 60208–3108.
R.P.H. Chang
Affiliation:
Northwestern University, Department of Materials Science & Engineering, Evanston, IL 60208–3108.
Get access

Abstract

The etching and growth behavior of diamond in CxFy / O2 / H2 plasmas have been investigated. Using this gas Mixture, diamond can nucleate on untreated tungsten carbide and silicon carbide substrates up to a density of 108 crystallites/cm2. This compares to a density of 102 crystallites/cm2 when using a methane gas mixture and these same substrates. The increase in nucleation density is attributed to the selective etching of the non-carbon component of the carbide with subsequent nucleation on the carbon enriched surface. The effect of temperature on the nucleation rate has been studied with a lower nucleation density at higher growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yarbrough, W.A., J. Am. Ceram. Soc. 75, 3179 (1992).CrossRefGoogle Scholar
2. Deguchi, M., Kitabatake, M., Hirao, T., Mori, Y., Ma, J.S., Ito, T., and Hiraki, A., Appl. Surf. Sci., 60–1, 291 (1992).CrossRefGoogle Scholar
3. Lin, S.J., Lee, S.L., Hwang, J., Lin, T.S., J. Electrochem. Soc, 139, 3255 (1992).CrossRefGoogle Scholar
4. Ong, T.P., Xiong, F., Chang, R.P.H., and White, C.W., J. Mater. Res., 7, 2429 (1992).CrossRefGoogle Scholar
5. Meilunas, R., Chang, R.P.H., Uu, S.Z., and Kappes, M.M., Nature, 354, 271 (1991).CrossRefGoogle Scholar
6. Meilunas, R., Chang, R.P.H., Liu, S.Z., and Kappes, M.M., Appl. Phys. Lett., 59, 3461 (1991).CrossRefGoogle Scholar
7. Dubray, J.J., Pantano, C.G., Meloncelli, M., Bertran, E., J. Vac. Sci. & Technol. A, 9, 3012 (1991).CrossRefGoogle Scholar
8. Kanetkar, S.M., Matera, G., Chen, X.K., Pramanick, S., Tiwari, P., Narayan, J., Pfeiffer, G., Paesler, M., Electron, J.. Mater., 20, 141 (1991).Google Scholar
9. Pehrsson, P.E., Glesener, J., Morrish, A., Thin Solid Films, 212, 81 (1992).CrossRefGoogle Scholar
10. Barnes, P.N., Wu, R.L.C., Appl. Phys. Lett., 62, 37 (1993).CrossRefGoogle Scholar
11. Stoner, B.R., Glass, J.T., Appl. Phys. Lett., 60, 698 (1992).CrossRefGoogle Scholar
12. Stoner, B.R., Sahaida, S.R., Baed, J.P., Southworth, P., Ellis, P.J., J. Mater. Res., 8, 1334 (1993).CrossRefGoogle Scholar
13. Meilunas, R., Wong, M.S., Ong, T.P., and Chang, R.P.H., in Laser- and Particle-Beam Chemical Processes on Surfaces, edited by Johnson, A.W., Loper, G.L., and Sigmon, T.W., (Mater. Res. Soc. Symp. Proc. 129, Pittsburgh, PA 1989), p. 533.Google Scholar
14. JANAF Thermochemnical Tables 14, supplement 1 (1985).Google Scholar
15. Chemical Rubber Company's Handbook of Chemistry and Physics, edited by Weast, R.C. editor, Vol. 60, 1980.Google Scholar
16. Venables, J.A., Spiller, G.D.T., Hanbucken, M., Rep. Prog. Phys., 47 399 (1984).CrossRefGoogle Scholar