Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:37:40.647Z Has data issue: false hasContentIssue false

Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature

Published online by Cambridge University Press:  10 March 2011

Pablo Simas
Affiliation:
Department of Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Thomas Schmoelzer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Maria L. Nó
Affiliation:
Department of Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Jose San Juan
Affiliation:
Department of Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Get access

Abstract

New advanced multi-phase γ-TiAl based alloys (TiAl-Nb-Mo), so called TNM alloys, have been developed to promote hot workability and to allow easier processing by conventional forging. However, to control and stabilize the final microstructure, specific processing and further thermal treatments are required. In the present work we used mechanical spectroscopy techniques to obtain a better understanding of the microstructural mechanisms taking place at high temperature applying two different heat treatments. Internal friction spectra and dynamic modulus evolution have been measured in an inverted torsion pendulum up to 1220 K. A stable relaxation peak was observed in both cases at about 1050 K for 1 Hz. Spectra acquired at several frequencies between 0.01 Hz and 3 Hz allow us to measure the activation parameters of this peak. In addition, a high temperature background (HTB) has been observed. This HTB, which has been found to be dependent on thermal treatments, has been analyzed to obtain the apparent activation enthalpy, which seems to be correlated to the creep behavior. Finally, we discuss the relaxation peak and the HTB in terms of the microstructural evolution during thermal treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoloff, N.S. and Sikka, V.K. (Eds.), Physical Metallurgy and Processing of Intermetallic Compounds. (Chapman and Hall, New York, 1996).Google Scholar
2. Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A. and Bartels, A., Adv. Eng. Mat. 10, 707 (2008).Google Scholar
3. Droessler, L., Schmoelzer, T., Wallgram, W., Cha, L., Das, G. and Clemens, H. in Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications, edited by Palm, M., Bewlay, B.P., Takeyama, M., Wiezorek, J.M.K., He, Y.-H. (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p. 121.Google Scholar
4. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids. (Academic Press, New York, 1972).Google Scholar
5. San Juan, J., in Mechanical Spectroscopy Q-1 2001, edited by Schaller, R., Fantozzi, G. and Gremaud, G., (Trans Tech Publications, Uetikon, Switzerland, 2001) pp. 3273.Google Scholar
6. Kumpfert, J. and Leyens, C., In Titanium and Titanium Alloys, edited by Leyens, C. and Peters, M., (Wiley-VCH, Weinheim, Germany, 2003) pp 5988.Google Scholar
7. Schmoelzer, T., Liss, K.D., Zickler, G.A., Watson, I.J., Droessler, L.M., Wallgram, W., Buslaps, T., Stuber, A. and Clemens, H., Intermetallics 18, 1544 (2010).Google Scholar
8. Simas, P., Master Thesis, University of the Basque Country, (2007).Google Scholar
9. Simas, P., San Juan, J., Schaller, R. and , M. L., Key. Eng. Mat. 423, 89 (2009).Google Scholar
10. Weller, M., Haneczok, G., Kestler, H. and Clemens, H., Mater. Sci. Eng. A 370, 234 (2004).Google Scholar
11. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., in Gamma Titanium Aluminides 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H.. (TMS, Warrendale, PA, USA, 2003) pp 451457.Google Scholar
12. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., Mater. Sci. Eng. A 370, 240 (2004).Google Scholar
13. , M.L., Esnouf, C., San Juan, J. and Fantozzi, G., Acta Metall. 36, 837 (1988).Google Scholar
14. Rusing, J. and Herzig, C., Intermetallics 4, 647 (1996).Google Scholar
15. Mishin, Y., Herzig, C., Act. Mat. 48, 589 (2000).Google Scholar
16. Weller, M., Clemens, H., Haneczok, G., Dehm, G., Bartels, A., Bystrzanowski, S., Gerling, R. and Arzt, E., Phil. Mag. Letters 84, 383 (2004).Google Scholar
17. Weller, M., Clemens, H. and Haneczok, G., Mat. Sci. Eng. A 442, 138 (2006).Google Scholar
18. Simas, P., San Juan, J. and , M. L., Intermetallics 18, 1348 (2010).Google Scholar
19. Wallgram, W., Schmölzer, T., Cha, L., Das, G., Güther, V. and Clemens, H., Int. J. Mat. Res. 8, 1021 (2009).Google Scholar
20. Wen, C., Yasue, K., Lin, J., Zhang, Y., Chen, C., Intermetallics 8, 525 (2000).Google Scholar